MOTOROLA

Semiconductor Products Inc.

MEK6800D2
MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, JBUG and MINIbug are trademarks of Motorola Inc.

Second Edition
© MOTOROLA INC., 1977
First Edition © 1976
““All Rights Reserved”’

Printed in U.S.A.

TABLE OF CONTENTS

CHAPTER 1: Introduction

1-1
1-2
1-2.1
1-3
1-4
14.1
1-4.2
1-4.3
1-4.4
1-4.5
1-4.6
1-4.7
1-4.8
1-4.9
1-5

General Description and Capabilitycoiiiiiiinnnenn...
Preparation for Use i e
Construction Hints iiiiiii ittt
Start-up Procedure i
Operating Procedureso.uiuieiiiiiiiiie it
Memory Examine and Changeooiriiiiiiiiiiinnneannnn..
Escape (ADOIt)o e
Register Displayoouuiiiuii i e e
Go to User Programuuiiiii ittt
Punch from Memory t0 Tapettt
Load from Tape to Memoryttt it e eenns
Breakpoint Insertion and Removal e s A S § SEEE R
Trace One INStructionoiiiiiiieiii i,

CHAPTER 2: Hardware Description

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

General DesCIiptioneuuiunieiiiiiiiiiirnnnnnnns
Memory Organizationuuuniiie ittt
Input/Output DEVICESiittit ittt ittt it i
System CloCKt e
Keyboard/Displayouiiiiiiiii
Trace (Execute Single INStruction)uuuuutrinrrrnreerererneennenns.
Audio Cassette Interface i
Kit EXpansionooiiiiiiiii i

CHAPTER 3: Software Description (JBUG Monitor)

3-1
3-2
33
3-4
3-5
3-6
3-7
3-8

Appendix 1: Assembly Listing of JBUG Monitor

General Descriptiono.uuuiiiiiiiiiiii e
Restart/Initialization RoUtingc.oiueiiniiniiineenneennennn.n.
Display Routineoiiiiuiiiiiiiiiiiiiie it
Keyboard Scan and Decode ROULINEc.vivtnneine e
Memory Examine/Change ROUtINEc.c.oeeeiiiiiiinnnennnnnnn.
Register Display Routine i ittt
Punch and Load Routinesttt

.....................................

Appendix 2: Assembly Drawings and Parts Lists
Appendix 3: Schematic Diagrams.................

Appendix 4: Power Supply Information

CHAPTER 1
INTRODUCTION

1-1 GENERAL DESCRIPTION AND CAPABILITY

This manual provides a general description and operating instructions for the Motorola
MEK6800D2 Evaluation KitII. The Kit, when assembled, is a fully functional microcomputer system based on
the MC6800 Microprocessing Unit (MPU) and its family of associated memory and I/O devices. The family is
described in the M6800 Microcomputer System Design Data book (included with the Kit) and in the M6800
Microprocessor Applications Manual. Detailed programming information is included in the M6800 Program-
ming Reference Manual.

The MEK6800D?2 is designed to provide a completely self-contained method for evaluating the
characteristics of the M6800 family. The standard Kit includes the following devices:

Qty. Device
1 MC6800 MPU
1 MCM6830 ROM with JBUG Monitor (SCM44520P)
3 MCM6810 RAM (128 x 8)
2 MC6820 Peripheral Interface Adapter (PIA)
1 MC6850 Asynchronous Communications Interface Adapter (ACIA)
1 MC6871B Clock Generator

As assembled Kit is shown in Figure 1-1-1 (all components shown are included with the standard
Kit.)
The Microcomputer Module printed circuit board is preengineered to accept the following addi-

tional components for expanding its capability:

Qty. Device

MCM6810 RAM (128 x 8)

MCM68708 EPROM (Equivalent to 2708)
MCS8T97 Buffer

MC8T26 Bidirectional Buffer

NOW NN

The expansion capability provides for a variety of user operating modes.

The integral Keyboard/Display Module can be used in conjunction with the JBUG monitor program
for entering and debugging user programs. Programs can also be loaded and dumped via the Audio Cassette
Interface. The Keyboard, Display and Audio Cassette circuitry are on a separate printed circuit board so that the
ACIA and a second PIA are available if the user has access to an RS-232 or TTY terminal. Wire-wrap space for
up to twenty 16-pin DIP packages is available for user designed circuitry on the Microcomputer Module. A user
generated terminal control program designed to interface with either the PIA or the ACIA can be entered via the
integral keyboard. Alternatively, the Kit will accept (in place of JBUG) the Motorola MINIbug II monitor
program. MINIbug II has monitor and diagnostic capabilities similar to JBUG but is intended for use with
RS-232and TTY type terminals. (See Appendix E of the Programming Reference Manual included in the Kit.)

1-1

‘t-1-1 34N

1-2

The Kit also permits several different memory configurations. The two MCM6810 128 x 8 RAMs
provided with the standard Kit will accommodate programs of up to 256 bytes in length (the third MCM6810 is
reserved for use by the monitor program). Addition of the two additional optional RAMs expands the capability
to 512 bytes. Strapping options for the additional ROM sockets permits any of the following combinations:

1024 bytes in 512 x 8 bit PROMs (MCM7641)
2048 bytes in 1024 x 8 bit EPROMs (MCM68708)
2048 bytes in 1024 x 8 bit Mask-Programmed ROMs (MCM68308 — same pin-out as
MCM68708)
4096 bytes in 2048 x 8 bit Mask-Programmed ROMs (MCM68316 — same pin-out as
MCM68708 except EPROM programming pin is used as additional addressing
pin.)
The general memory organization of the Kit is shown in Figure 1-1-2.
Adding the optional buffers in the spaces provided upgrades the Kit to EXORciser-compatible
status; hence, all the EXORciser I/O and Memory modules (see included data sheets) can also be used with the
Kit. For example, addition of MINIbug II, an 8K Memory board, and the EXORciser’s Resident Editor/

Assembler to the Microcomputer Module creates a complete development/prototyping tool.

FFFF
Not Used
E400
JBUG Moni
UG Manitor Prog E000
€800
Optional ROM
_______ orPROM_] cooo
A080
128 Bytes RAM (JBUG Scratch) A000
8024
PIA {Keyboard Interface) 2020
8009
ACIA (Cassette Interface)
8008
P
IA 8004
6800
Optional ROM
_______________ _1 6400
or PROM 6000
Optional 256 Bytes RAM
0100
256 Bytes RAM
0000

FIGURE 1-1-2. Memory Map for MEK6800D2

1-3

1-2 PREPARATION FOR USE AND OPERATION PROCEDURES

The Kit can be assembled by referring to the assembly diagrams of Figures A2-a and A2-b
(Appendix 2) for component placement. Recommended procedures for the handling of MOS and CMOS
integrated circuits are reviewed in Table 1-2-1 and should be followed during assembly. The Kit is completely
self-contained and required only the addition of a 5-volt dc power supply. Additional +12-volt dc supplies are
required only if electrically programmable read only memories (EPROMs) are used or if RS-232 capability is to
be added to the Kit. The switches, connectors and display indicators are identified in Figure 1-1-3.

Caution must be exercised to avoid any electrostatic or high-voltage charge from coming in contact
with the MOS gate elements. The gate oxide is approximately 1000 to 1200 A thick and can be ruptured by
static potentials as small as 80 volts. Most MOS circuits employ various input protective schemes. However, an
electrostatic charge may still cause damage to the gate oxide during the finite time required for the protective
device to turn on.

The following handling precautions are recommended for MOS circuits:

1. All MOS devices should be stored or transported in conductive material so that all exposed
leads are shorted together. MOS devices must not be inserted into conventional plastic foam or
plastic trays of the type used for the storage and transportation of other semiconductor devices.

2. All MOS devices should be placed on a grounded bench surface and the operators should
ground themselves prior to handling devices. This is done most effectively by having the
operator wear a grounded conductive wrist strap.

3. Silk or Nylon clothing should not be worn while handling MOS circuits.
4. Do not insert or remove MOS devices from test sockets with power applied.

5. Check all power supplies to be used for testing MOS devices to be certain no voltage transients
are present.

6. When lead straightening or hand soldering is necessary, provide ground straps for the apparatus
used.

7. Do not exceed the maximum electrical voltage ratings specified by the manufacturer.

8. Double check test equipment setup for proper polarity of voltage before conducting parametric
or functional testing.

9. Cold chambers using CO: for cooling should be equipped with baffles, and devices must be
contained on or in conductive material.

10. All unused device inputs should be connected to VDD or Vss.

11. All power should be turned off in a system before printed circuit boards containing MOS
devices are inserted or removed.

12. All printed circuit boards containing MOS devices should be provided with shorting straps
across the edge connector when being carried or transported.

TABLE 1-2-1: MOS Handling Recommendations

1-4

EXORciser
Compatible
Bus Connector J2

From
Keyboard/Display
Module

User

170
Connector
J1

Reset
Switch

FIGURE 1-1-3a. Microcomputer Module

1-2.1 CONSTRUCTION HINTS

Earphone

Address Data
Displays Displays Microphone

To Microcomputer
Module

Hexadecimal Command
Data Keys
Entry

Keys

FIGURE 1-1-3b. Keyboard/Display Module

The 24-pin socket supplied for the clock must be modified to fit the PC Board. This can be done by
removing the protective strips on the bottom of the socket and pulling out unwanted pins from the bottom. The
pins that must be removed are 2, 4, 6, 8, 9, 10, 11, 14, 15, 16, 17, 19, 21, and 23.

The Keyboard has 6 pre-drilled holes for use with standoffs or machine screws to support the board
while in use. It is recommended that the board be supported above the bench a minimum of 1/4 inch to prevent

accidentally shorting conductors on the bottom of the board.
When inserting CMOS devices, it is recommended that a low wattage soldering iron with a
grounded tip be used. This will prevent damaging the part. Another alternative would be using sockets for the

parts.
The cable assembly consists of five items.

Edge connector

Edge connector cover

50 pin PC Board connector
PC Board connector cover

The cable may be assembled as follows:

(part no. 3415-0001)
(part no. 3415)

(part no. 3426-0000T)
(part no. 3426)

Approximately 3 feet of 50 conductor flat cable (part no. 3365)

Step 1: Solder the 50-pin PC board connector (3426-0000T) in place on the Keyboard/Display Module.

1-5

Step 2: Remove protective liner from the PC Board Connector Cover (3426) by first pressing along length of
liner (this will insure good adhesive coverage) and then applying lateral thumb pressure on liner to
displace it enough to be peeled off.

Step 3: Press deeply ribbed side of cable (3365) into alignment grooves of cover, positioning it as required in
step 4. Check visually to insure that the cable is aligned in cover grooves and is even with the edge of
the connector.

Step 4: Place cap and cable over PC Board connector with the cable running away from the Keyboard/Display
Module with the red stripe corresponding to pin 1 of the connector. Then press the assembly together
using a bench vise.

Step 5: Repeat steps 2 and 3 with edge connector and cap on the other end of the cable, keeping the red
conductor aligned with pin 1 of the edge connector. Press this assembly together using the vise.

Step 6: The female edge connector will now mate with the male edge connector (J2) on the Microcomputer
Module. The female conductor labled ‘‘1°” should align with the male conductor labled *“A’’. (The
cable ‘‘approaches’’ the back of the Microcomputer Module.)

1-3 START-UP PROCEDURE

Connect the cable attached to the Keyboard/Display Module to connector J2 on the Microcomputer
Module. Apply 5-volt dc power. Pushing the reset switch on the Microcomputer Module should now cause the
JBUG prompt symbol, ‘‘dash’’, to be displayed in the left-most display indicator on the Keyboard/Display
Module. The remaining five displays will be blanked. The JBUG control and monitor program is now in
operation and any of the functions described in the next section may be invoked by means of the data and
command keys on the Keyboard/Display Module.

1-4 OPERATING PROCEDURES

The Keyboard/Display Module, in conjunction with JBUG, provides a means of examining
operation of the Microcomputer Module and entering and trouble-shooting programs. The Keypad has sixteen
keys labeled O-F for entry of hexadecimal data and eight keys for commanding the following functions:

M — Examine and Change Memory

E — Escape (Abort) from Operation in Progress

R — Examine Contents of MPU Registers P, X, A, B, CC, S

G — Go to Specified Program and Begin Execution of Designated Program
P — Punch Data from Memory to Magnetic Tape

L — Load Memory from Magnetic Tape

N — Trace One Instruction

V — Set (and Remove) Breakpoints

Operating procedures for each of these functions are described in the following paragraphs. The
display should be showing the prompt ‘‘dash’ before any command is invoked.

1-6

1-4.1 MEMORY EXAMINE AND CHANGE (M)

This function permits examination and, if necessary, change of memory locations. A map of the
MC6800 instructions is included as Table 1-4.1-1 and is useful in translating memory data to instruction
mnemonics.

Open the memory location to be examined by entering the address (as 4-digits of hex via the hex
keypad) followed by closure of the M key (hhhhM). The display will now show the address that was entered in
its group of four displays on the left and the contents in the two on the right. The user at this point has three
options: (1) Leave this location unchanged and move to the next location by closing the G key. The new address
and its data would then be displayed. (2) Change the data by simply entering the new data via the hex keypad
(hh). In this case the display would then be showing the new data that was entered. In the event that an attempt is
made to change Read Only Memory (ROM), the display will continue to show the original data. (3) Close the
Memory Examine function by means of the E key. Closure of the E key will return operation to the monitor and
the prompt will again be displayed.

1-42 ESCAPE (ABORT)

This function provides an orderly exit from the other functions and/or user programs. Examples of
its use are included in the accompanying descriptions of the other functions.

1-4.3 REGISTER DISPLAY (R)

This function permits examination of the MPU’s registers and may be invoked at any time the JBUG
prompt is being displayed by closing the R key. Following closure of R, the display will show a 4-digit hex
value, the present contents of the Program Counter. The remaining registers may now be examined by
sequencing with the G key and will appear in the following order: Index Register, Accumulator A, Accumulator
B, Condition Code Register, Stack Pointer.! - N

This display is circular, i.e., a G key closure following display of the Stack Pointer will cause the
Program Counter to be displayed again. The E key may be used to escape back to the monitor at any point in the
display sequence. If required the contents of any register can be changed by using the Memory Change
function. The monitor executed an interrupt sequence when R was invoked. In servicing an interrupt, the
MC6800 saves its registers on a stack in memory (it is these memory locations that the R function ‘‘examine-
s’”). On exit from the R interrupt service routine, the MPU retrieves these values and reloads its registers; hence
if the data on the stack is changed with the M function, the new data will go into the MPU. The following
locations are used to stack the registers:

$A008% — High order byte of Stack Pointer
$A009 — Low order byte of Stack Pointer
S + 1 — Condition Code Register

S + 2 — Accumulator B

S + 3 — Accumulator A

S + 4 — High order byte of Index Register

'Tt is a characteristic of the display routine that the value displayed for the Stack Pointer is seven less than the actual value.
%In this manual, hexadecimal data is identified by preceeding it with a dollar sign symbol, $.

1-7

dey uononnsuj 0089 “I-1'v-L 31EVL

— %u%s_ %_"__wmusﬁ.ﬂ%m_é = 134 apow gm_wmeuz aepaww) = WWI
Jo = ayu| = =
apog dg peyuawsiduiun, S oepusy= o P OPOW BUSSADPY Xapu| = o " 3PN Bussaspby PaNa =
1X3) (1x3) (1x3) (1x3) (1X3) (1x3) (
wa) | wa) @@ 9" @] 9| @] 9@ | gL e i Mt
X1S Xai | - ; aav V4O aav Ho3 VIS val lg anv | . 08s diNd ans | 4
(an1) (aND) {ann) (ann (oND) (ann) (ann) (ann
e i e e e e I e I e I i @ ™| (g | g @
X1S Xai | . . oav V4O aav 403 vis va lg anv | . 08s do ans | 3
(W@ (4i0) (Hi0) (410) (W10} (H10) (410) (41a)
@ | @9 @%@ @ @ @ @@ [e
X18 Xa1 | . . aav V40 aay 03 VIS val ug anv | . 08s dwo ans | a
W) | (wwD) (W) | () W] D | (W) (W)
e @ e e | @ @ e | @ @ [@M [M
. a1 | . . oav VHO aav yoa| . val g anv | . 28s diND ans | 9
(1x3) (el (1x3) (1x3) (1x3) (I¥e)] (1x3) (1x3)
wal} - wa) | el walf e f e e wal ba wa)f e] 0P | | @
SIS Sa1 ysr Xd2 aay V40 aay HO3 V1S val g anvy | . 283 dWo ans | g
(ann (ant) (aNn) {(ann {(ann (anmn {aND (aNn (ann (aN1)
e el R PP PP P T P P PR P) TV | 1y O (0N
SIS sal ysr Xd2 aav VHO aav Ho3 V1S val lig aNnv | . 28S dd ans | v
(Hia) (wa) (wa) (H10) wa)|- (Wa) (H1q) (W) (Hia) (W)
el o) O I e e e I e I R [R K e I w09 | MO [) 4O
SIS sa1 | - Xd9 aav V40 oav H03 V1S val JIL: anvy | . 0ds dwo ans | 6
)| (WD | WD | D | (wwD] (AW (WA | AND | (W) (wwn | (
e BT e I ¥ e PP Lo I WL) P P PP
. sal Hsd Xdd aav vHO aav wo3a| . val e anv | . 08S dio ans | 8
(1x3) Ve (1x3) Lx3) (1x3) (3 (1x3) (1x3) (1x3) (1x3) (1x3) (1a)
H19 dwr 181 ONFE . 230 704 ISy HSY Hou | . HS1 WoOD | . . 03N | ¢
(ani) (an1) (ann) (aN1) (oND) (ann) (aND (ann) (ann) (aN1) (an1) (ann
419 dr 181 oNE | 23a 704 R[] HSY Hod | . Hs1 Woo| . . DIN | 9
(a) (a) () () (@ (a) (8) (@ (8) (8) @
¥ 181 N[- 930 104 18V Hsy Hod| . I3 Woo| . 93N | §
(v) (v) (v) (v) (v) v {v) (v) (v) () (v)
v | . 181 N | 23a 10d sv ysy Hod| . Hs1 Woa| . . 9N | ¢
(HN1) (HND (HND {HND) () (V) (HND (HNI) (@ (v) (HND (HND
IMS vm | . . My | - SiH | . HSd HSd SXL $30 nd nd SNI XSl | ¢
(13Y) (3w (3w (3y) (13w) (13y) (13y) (134) (134) (13y) (3v) (13w (3y) (13w) (3w
18 198 178 399 INg 148 X:| Y:| 03d aNg $o8 208 (L] HE | . vae | 2
(HND (HNI) (HND) (HND
. . . . vav | . wal| - val avl| . . 5 . va) vas | 1
(HND) (HND) (HNI) (HNI) (HNI) (HN) (HNI) (HNI) (HND) (HND) (HND
138 119 938 919 A3S ATD Xaa XNI vdl dvi| doN| . 0
ask
4 | a]] Y 6 8 L 9 g v € Z L 0
87

1-R

S + 5 — Low order byte of Index Register

S + 6 — High order byte of Program Counter

S + 7 — Low order byte of Program Counter
where “‘S’’ is the current Stack Pointer as saved in $A008 and $A009. Note that it is necessary to exit the R
display function and enter the M in order to change register values.

1-4.4 GO TO USER PROGRAM (G)

If the Prompt is being displayed, and assuming that a meaningful program has been previously
entered, the MPU can be directed to go execute the program simply by entering the starting address of the
program (via the hex keypad) followed by closure of the G key (hhhhG). The resulting blanking of the displays
is an indication that the MPU has left the monitor program and is executing the user’s program. The MPU will
continue executing the user program until either an Escape (E key) is invoked or the program ‘‘blows’’.
Control, indicated by the prompt ‘‘dash’’, can normally be obtained with the E key. It is possible that an
incorrect program could have caused the monitor’s variable data to be modified. In this case, it is necessary to
regain control using the reset switch on the Microcomputer Module.

1-4.5 PUNCH FROM MEMORY TO TAPE

The Punch function allows the user to save selected blocks of memory on ordinary audio tape
cassettes. Before invoking Punch, the Memory Change function should be used to establish which portion of
memory is to be recorded. Using Memory Change, enter the desired starting address into locations $A002 and
$A003 (high order byte into $A002, low order byte into $A003). Similarly, enter the high and low order bytes
of the desired ending address into $A004 and $A005, respectively. Escape from Memory Change via the E key,
thus obtaining the monitor prompt dash. With the audio recorder’s microphone input connected to the
corresponding point on the Keyboard/Display Module and the prompt present, the Punch function is performed
as follows. Position the tape as desired (fully rewound is recommended) and put the recorder in its record mode.
Close the P key. The prompt will disappear during the Punch process and then re-appear to indicate that the
Punch operation is completed. Typically, the prompt is “‘off’’ for over 30 seconds since the recording format
specifies that a thirty second header of all ones be recorded ahead of the data. See sections 2-7 and 3-7 for
additional details on the recording format.

1-4.6 LOAD FROM TAPE TO MEMORY

The Load function can be used to retrieve from audio magnetic tape data that was recorded using the
Punch function described in the preceding section. With the audio recorder’s earphone output connected to the
corresponding input on the Keyboard/Display Module (and with the monitor prompt present on the display), the
Load function is performed as follows. To load the desired record, position the tape at the approximate point
from which the Punch was started and then put the recorder into its playback mode. Close the L key. The prompt
will disappear, then re-appear when the Load function is completed. After the prompt re-appears, the Memory
Examine function can be used to examine locations $A002 and $A003. They will contain the beginning address
of the block of data that was just moved into memory. The end address is not recovered by the function, hence
the data in locations $A004 and $A005 is not significant during the Load function.

1-9

1-4.7 BREAKPOINT INSERTION AND REMOVAL (V)

Because of the difficulty in analyzing operation while a program is executing, it is useful during
debug to be able to set breakpoints at selected places in the program. This enables the user to run part of the
program, then examine the results before proceeding. The breakpoints are set by entering the hex address of the
desired breakpoint followed by a V key closure (hhhhV). This may be repeated up to five times. The breakpoint
entry function can be exited after any entry by using the E key. The monitor program will retain all the
breakpoints until they are cleared.

If at any time an hhhh'V entry is made and the hhhh (hex data) does not appear on the display, there
were already five breakpoints stored and the last one was ignored. At any time the prompt is displayed, entry of
a V command not preceeded by hex data will cause the current breakpoints to be removed. If a breakpoint is
entered and the program is subsequently executed to that point, the display will show the current value of the
Program Counter in the four indicators on the left. (This will be the same as the breakpoint address that was
inserted.) The right hand two displays will contain the data stored at that location — that is, the operating code.
At this point the G key can be used to sequence through the other MPU registers exactly as in the register display
function. If it is desirable to proceed on from the breakpoint simply use E (to get the prompt) and then the G key.
At this point, the MPU will reload its registers from the stack and continue with the user’s program until another
breakpoint is encountered or the E key is used again.

1-4.8 TRACE ONE INSTRUCTION (N)

The Trace function permits stepping through a program one instruction at a time. The Trace function
can be invoked any time the user program is at a breakpoint or has been aborted with the E key. However,
tracing cannot begin from start-up because the trace routine does not know where the starting address is.
Therefore, an hhhhV command must be given at least once before Trace can be used.

Enter the Trace function by first setting a breakpoint at the location from which it is desired to trace
and then invoking hhhhG to begin program execution. The breakpoint can be set at the very beginning of the
program if desired.® Following the hhhhG command, the program will run to the breakpoint and stop,
displaying the Program Counter as before. If the N key is now closed, the MPU executes the next program
instruction and again halts. The display will then show the address of the next instruction (Program Counter)
and the operating code located there. The G key can be used to sequence the other registers on to the display as
for a breakpoint if desired. The N key can now be used to trace as many instructions as desired.*

The Trace function cannot be used directly to trace through user IRQ interrupts. The NMI is higher
priority and will cause the IRQ to be ignored. Repeated attempts to execute the Trace command when user IRQ
interrupts are active will result in JBUG continuously returning with the same address. See sections 2-6 and 3-8
of this manual and the M6800 Microprocessor Applications Manual for additional information.

3This procedure assumes the program is in RAM since breakpoints are handled by substituting an SWI for the op-code. If the program to
be traced is entirely in ROM, use a convenient RAM location to insert a jump to the desired ROM address. Then set a breakpoint at the
address of the jump instruction and proceed as above.

41t is a characteristic of the Trace function that all breakpoints in effect at the time Trace is invoked will be removed and must be
re-installed following exit from Trace.

1-10

Interrupt service routines may be traced by setting a breakpoint at the beginning of the service
routine. The Go function may then be used to start program execution, allowing a normal entry into the RQ
service routine. Once in the service routine, Trace can be used as usual. The E key may be used to exit from
Trace at any time.

1-4.9 CALCULATION OF THE OFFSET TO A BRANCH DESTINATION

The instruction format for conditional branch instructions calls for the offset to the destination to be
entered immediately following the branch instruction op-code as a signed two’s complement number. Mental
calculation of the offset is awkward due to the required two’s complement format. A short program for making
this calculation is included in JBUG (lines 62-70 of the assembly listing included as Appendix ! of this
manual). Use the following procedure with this program:

1. Obtain the prompt ‘‘dash’’ by escaping from the current operation.
2. Find the current value of the stack pointer by entering the Register Display.

3. Exit from Register Display and open memory location S+2, where S is the current value of the
stack pointer as obtained in Step 2. S+2 is the location of the current stacked value of
Accumulator B. Enter the high order byte of the destination address in this location. Next, enter
the low order byte of the destination into Accumulator A in location S+3.

4. Put the high and low order bytes of the branch instruction’s op-code address into S+4 and S+35,
respectively. This loads the stacked Index Register with the op-code address.

5. Use the ““E’’ key to exit from the Memory Examine/Change function and then enter $E000G to
begin executing the program starting at location $E000 in JBUG.

6. The program runs to location $E013 and hits the SWI breakpoint located there. Examine the
contents of Accumulators A and B by invoking Register Display and sequencing through the
Registers with the G key. The offset, in the correct form for entry in the program, is now in
Acc.A. If Acc.B contains $FF, the offset is valid (within the allowed range) and is in the negative
direction. If Acc.B contains $00, the offset is valid and in the positive direction. Any other value

indicates that the destination is beyond the allowed range.

1-5 OPERATING EXAMPLE

The following example program is suitable for gaining familiarity with the JBUG monitor features.
The program adds the five values in locations $10 through $14 using Acc. A and stores the final result in
location $15. The intermediate total is kept in Acc. A; Acc. B is used as a counter to count down the loop. The
Index Register contains a ‘‘pointer’” (i.e., X contains the address) of the next location to be added. The
program, as follows, contains an error which will be used later to illustrate some of JBUG’s features.

In the following listing, the leftmost column contains the memory address where a byte (8 bits) of the
program will be stored. The next column contains the machine language op-code and data for a particular

1-11

microprocessor instruction. The next four columns contain the mnemonic representation of the program in

assembler format.

0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030
0031

*

* Add 5 numbers at locations 10-14

* Put answer in location 15
3

8E STRT LDS S$FF DEFINE STACK IN USER AREA
00

FF

4F CLRA TOTAL # 0

C6 LDAB #4 INITIALIZE COUNTER

04

CE LDX #8$10 POINT X TO LOCATION 10

00

10

AB LOOP ADDA O,X ADD 1 LOCATION TO TOTAL
00

08 INX POINT X TO NEXT LOCATION
SA DECB DONE ALL 5 LOCATIONS?

26 BNE LOOP BRANCH IF NOT.

FA

97 STAA $15 SAVE ANSWER

15

3F SWI GO TO JBUG

A detailed procedure for entering and debugging this program is shown in the following steps.

1. Start Up and Enter the Program in RAM

A.

B.

Pt

Turn power on. Push reset button on the main card. JBUG will respond with a *‘—".

Type 0020 followed by the M key. This displays the current contents of location 0020.

Type 8E. This replaces the contents of 0020 with 8E which is the op-code for the first
instruction, LDS.

Type G. This steps to the next location (0021) and displays the contents.

= 0 m @ o

Type 00.

Type G.

Type next byte of op-code or operand (FF in this case).
Repeat steps F and G for remaining instructions.

Type E. Abort input function.

1-12

Verify That the Program Was Entered Correctly

A. Type 0020M. Location 20 will be displayed.

B. Type G. Next location will be displayed.

C. Repeat step B until done, visually verifying data entered in Step 1.
D. TypeE.

Enter Data in Locations 10-14

A. Same as 1 except type 0010M to start the sequence. Any data may be entered; however,
for purposes of this example 01, 02, 03, 04, 05 should be entered.

B. TypeE.
Verify Data

A. Repeatstep 2 except type 0010M to begin the sequence. Verify that the memory contains
the values 01, 02, 03, 04, 05 in sequencial order.

Run the Program
A. Type E to insure no other option is active.

B. Type 0020G. The program will run down to the ‘“‘SWI’’ instruction at location 31 which
will cause it to go to JBUG and show 0031 3F on the display.

Check the Answer
A. TypeE.

B. Type 0015M. (The answer is stored in location 15). Note that it says OA (decimal 10).
The correct answer is OF or decimal 15; therefore, there is a problem in the program as
originally defined. The next steps should help isolate the problem and correct it.

Breakpoint and Register Display

A. Itmight be helpful to see what the program was doing each time it went through the loop.
Therefore, set a breakpoint at the beginning of the loop, location 0029. To do this type E,
then tye 0029V.

B. A breakpoint could also be set at location 002F to see the results. Type E. Type 002FV.

C. JBUG must be told where to begin, so type E and then 0020G. JBUG will run to the
breakpoint and then display 0029 AB. At this point the program is suspended just before
location 29 and is in JBUG. On detecting this breakpoint, JBUG automatically displays
the PC and is in the register display mode.

D. Type G (Go to next register). The display should read 0010. This is the value of the X
Register.

E. Type G. Display = 00 (A Register).

1-13

~

=

M.
N.
0.
P.

Type G. Display = 04 (B Register).
Type G. Display = DO (Condition Code Register).

Type G. Display = 00F8 (Stack pointer). Even though the program set the stack pointer
to FF the action of the breakpoint used a software interrupt to store the registers on the
stack, thus decrementing it by 7 locations. When JBUG returns to the user’s program the
stack will return to FF.

Type G. Display = 0029 (PC). The register display is circular and steps D through H
could be repeated.

Type E. Abort the register display portion of the breakpoint. Type G to return to the
example program and resume executing. Since the breakpoint at location 0029 is in a
loop it will again be the next breakpoint and the display will contain 0029 AB. At this
point the registers may be displayed again as per steps D throughI. If this were done the A
would be seen to contain the partial sum and the B would be decremented. The X Register
would be one greater than previously.

Type E.

Type G (Proceed). Display will type 0029 AB. Once again the registers may be
examined.

Type E.
Type G (Proceed). Same comment as L.
Type E.

Type G (Proceed). Display will now type 002F 97. The program has now successfully

completed the loop four times and the A-Register contains the incorrect sum.
E

Correcting the Program

A.

mom oo 0w

From above it is evident that although the program was supposed to add five numbers, the
loop was executed only four times. Therefore, the LDAB #4 instruction at location 24
and 25 should have initialized B to five. There are two approaches to fix the problem; one
is temporary, the other is permanent. First the temporary one:

Type E.

Type V. Clears existing breakpoints.

Type 0026V. Set a breakpoint just after B register was loaded.
Type E.

Type 0020G. The program will execute up until 0026 and then go to JBUG., Display =
0026 CE.

Type G five times. This displays the current stack pointer (00F8). The B register contains
the counter we wish to modify and is located at location SP + 2 (FA).

1-14

=

©

zZ 2 © R

Type E.
Type OOFAM. The display = O0OFA 04.

Type 05. The display will change to O0FA 05.

Type E.

Type G. Proceed from user breakpoint down to the SWI instruction.
Type E.

Type 0015M. Display = 0015 OF. The program has now calculated the correct value for
the addition of the five numbers 1-5. This verifies the fix but would be inconvenient to do
each time the program was executed. A permanent change would be:

Type E, then type V. This clears all breakpoints.
Type 0025M. The display = 0025 04.

Type 05. The display = 0025 05. This will now permanently change the LDAB #4
instruction to a LDAB #5 instruction.

Type E.
Type 0020G. Execute the program.
Type E.

Type 0015M. Display = 0015 OF, the expected answer; the program is permanently
fixed.

Trace Through the Program

A.

m o o =

Type E. In order to execute a trace, the program must first be stopped at a breakpoint. To
trace from the beginning do:

Type V. This clears the existing breakpoints.
Type 0020V. This sets a breakpoint at the first instruction.
Type E.

Type 0020G (Go to user program). JBUG will immediately get the breakpoint and type
0020 8E.

Type N. The program will execute one instruction and display 0023 4F. At this point the
user can either display the registers by depressing the G key or can continue to the next

instruction. To continue:

Type N. Go to next instruction. Display register if desired.

Continue step G for as long as desired. Note: Do not try to trace after executing the SWI

instruction; a restart will be necessary before continuing.

Type E. Clear trace mode.

10. Offset Calculation Including Register Modification

A.

t

m o m

—y el

Mo Z 2 C R

Assume that the SWI instruction at location 31 is to be changed to a branch always (BRA)
to location 20. This will cause the program to remain in an infinite loop (i.e. , the program
has no end and will run continuously unless interrupted by some outside stimuli). Type
0031 to open the memory location. The display = 0031 3F.

The op-code for a BRA is a 20, so type 20. The display = 0031 20.

The second byte of the BRA instruction should be the two’s complement negative offset
to location 20. Since doing this calculation in hex is tedious and error prone, a small
unsophisticated (there was only a little ROM left) program that does offset calculation
was provided at location EOOO in the JBUG ROM.

Type E.

TypeR, then type five G’s. This will display the current stack pointer so that the registers
can be located and set up.

Type E.
Type in hhhhM where hhhh = SP + 2. This displays the current B register.

Type 00. This is the high byte of the destination address of the branch.

Type G. This displays location SP + 3 which contains the A-register value.
Type 20. This is the low byte of the destination address.

Type G. Display high byte of X register.

Type 00. Insert high byte of the branch op-code address.

Type G. Display low byte of X register.

Type 31. Insert low byte of the branch op-code address.

Type E.

Type EOOOG. When the program is completed it will return to JBUG via the SWI at
location E013 and the PC will be displayed.

Type G twice. The A register is now displayed and contains ED which is the correct
offset.

Type G. The B register will contain an FF to indicate the branch was within range.
Type E.
Type 0032M.

Type ED. Insert the branch offset.

1-16

11.

12.

13.

Executing and Aborting

A.
B.

T o ®om U

Type E.

ER]

Type 0020G. The program will begin executing and the JBUG prompt “‘—”’ will

disappear since the program now contains an infinite loop.

Type E. This aborts (Exits) the program and returns control to JBUG. The prompt has
now returned.

Type R. Display the PC and any other registers of interest.
Type E.

Type G. Program will again execute.
Type E. Abort program and return to JBUG.

Repeat F and G for as many times as you wish.

Punch Program to Cassette

A.

—

L.

& Q@ m = o0

Rewind the cassette. Type E.

Type ACO2M.

Type 00. Enter high byte of beginning address.
Type G.

Type 20. Enter low byte of beginning address.
Type G.

Type 00. Enter high byte of ending address.
Type G.

Type 32. Enter low byte of ending address.
Type E.

Turn on cassette in Record mode.

Type P. Wait for JBUG prompt to return (approximately 30 seconds).

Load Program from Cassette

A.

m o aw

Turn off power. This will cause the program in memory to be lost. Turn power back on.
Push the Reset button and get the JBUG prompt.

Rewind cassette.

Start cassette in playback mode.

Type L. Wait for the JBUG prompt. Test the program by any of the options described
above.

1-17

CHAPTER 2
HARDWARE DESCRIPTION

2-1 GENERAL DESCRIPTION

The MEK6800D2 Kit consists of two printed circuit board assemblies, the Microcomputer Module
and the Keyboard/Display Module. The Keyboard/Display Module includes interface circuitry for using
standard Audio Cassette tape recorders as an off-line magnetic storage medium. The Keyboard/Display
Module provides an economical operator interface to the Microcomputer Module and is supplied as a separate
board in order to facilitate using the Microcomputer Module with other terminals or as an end-item in the user’s
system development.

The Keyboard/Display Module is used in conjunction with a monitor program (called JBUG)
supplied in an MCM6830 ROM to permit an operator to communicate with and control the Microcomputer
Module. A detailed description of the available functions and commands is included in the Operating
Procedures section (Section 1-4 of Chapter 1). The features are, in summary:

1. Examine and Change Memory

2. Display and Change MPU Registers

3. Go to User’s Program

4. Trace One Instruction

5. Set and Clear up to Five Breakpoints

6. Proceed from Breakpoint

7. Abort from User’s Program

8. Calculate Offset to Relative Branch Destination

9. Transfer Designated Memory Locations to Magnetic Tape

10. Load Memory Locations from Magnetic Tape

2-2 MEMORY ORGANIZATION

The general memory organization of the Kit is shown in Figure 1-1-2 of Chapter 1. The memory map
is shown in tabular form in Table 2-2-1. In the M6800 system, memory location assignments are determined by
the combinations of MPU address lines that are applied to the device chip select lines.

In Table 2-2-1, the signals designated as ROM, PROM, etc., are the outputs of an MC74155
One-of-Eight Decoder. The MC74155 decodes the MPU’s VMA, A1S, Al4, and A13 lines. For example,
when these lines are all high, corresponding to memory address $E000 (2% + 2'* + 213), the ROM output of
the Decoder is low. This signal is applied to the chip select line CST of the JBUG ROM, thus selecting this

2-1

SIGNALS DECODED

DEVICE | ADDRESSES | ¢2 |R/'W| syMBOL |vma|A15iAt14{A13|A12{A11]a10{ A9 | A8 | A7 | A6 |AS [A4 A3} A2 | A1] A0
ROM EOOO-E3FF | 1 | 1 |[ROM =| 1 {1 [1 |1 x [x] x|x|x]x]x}]x{x]x
PROM CO000-C3FF PROM =| 1 1 1 0 + X X X X X X X X X X
RAM (Stack) | A000-A07F | 1 | x |STACK =| 1 |1 o |1]o0 ojlolx|x|x|x|{x|x]x
PIA 8020-8023 | 1 | x |10 =f1]|1]o0o]o 1 ox|ox | x | x
ACIA 8008-8009 | 1 | x |70 =lt|1fo]o 0% 1| o* X
PIA ~ 80048007 | 1 | x [WO ={ 1|1 |0]o0 0* o*| 1 |x |x
PROM 6000-7FFF 67 =l 1|lo|1]1 +lx] xdx]xx|x]x|x{x]x
USER 4000-5FFF 45 ={1]of1]o

USER 2000-3FFF 23 ={1{0]o |1

RAM (User) | 0000-007F |1 | x [RAM =1 |0 |0 |0 0ojo|ofx|x|x|[x]x]|x]x
RAM (User) | 0080-00FF |1 | x [RAM =1 |0 |o |0 oo |1 |xixx|x|x]x]x
RAM (User) | 0100-017F | 1 | x [RAM =|1]0 0 |0 of1]of{x|x |x){x|x|x]x
RAM (User) | 0180-01FF |1 | x [RAM =1 |0 |0 |0 0|11 {x]x]x|x}|x]|x]x

Decoded by the device addressed

=
I

*
Il

Required but not decoded by the device addressed

+
]

Decoded by 2K x 8 bit optional RAM

TABLE 2-2-1: MEK6800D2 Evaluation Kit Il Address Map

device whenever the MPU outputs addresses in the range of $E000 to SEFFF. The particular locations within
the ROM are selected by applying MPU address lines AO thru A9 to the ROM address inputs. The JBUG ROM
is located at tie highest addresses in the kit’s memory field. Note that A12 from the MPU is not applied to this
ROM so it will also be selected when the MPU outputs its Restart and Interrupt Vector addresses, $FFF8 —
$FFFF. Start-up and interrupt capability is obtained by placing the appropriate interrupt vector addresses in
locations SEEE8 — $EFFF of the monitor program.

Additional addresses are decoded for the optional ROMs that can be added for user-generated
programs. The Microcomputer Module is layed out to accept either two MCM68708 1024 x 8 bit Electrically
Programmable Read Only Memories (EPROM) or two MCM7641 TTL 512 x 8 bit Programmable Read Only
Memories. The PROMs are more economical but cannot be erased like the EPROM. Two MCM68316 2048 x 8
bit ROMs can also be used in the PROM locations. In this case, MPU address line A10 is applied to the
MCM68316 for decoding the additional 1024 bytes. Jumpers on the PCB are provided for selecting the desired
combination of ROM (see note 6 on the schematic diagram of Figure A3-a).

The MC6810 (128 x 8) RAM occupying memory locations $A000 — $A07F is used by the MPU for
temporary storage of its internal registers during interrupts and subroutines and is selected by the signal
STACK. The MPU also uses this area for storage of flags and temporary data used by the JBUG monitor. This
organization allows a clean separation between monitor requirements and user RAM. The system assigns, via
the RAM signal, the four user RAMs to the bottom of memory in locations $0000 — $O1FF (first 512 bytes).
This RAM is useful for small user programs or for scratchpad memory in the MPU’s direct addressing range for
larger user programs. To prevent contention with these RAMs, expanded systems should avoid these memory

2-2

locations; however, the board is easily modified (see Section 2-8 on system expansion) to accommodate
external memory in this range.

The two signals 2/3 and 4/5 are brought to the edge connector and may be used to select two external
8K-byte blocks of memory. The 2/3 line decodes the second 8K-byte block ($2000 — $3FFF) of the memory
space; 4]5 decodes the next 8K locations ($4000 — $5FFF).

2-3 INPUT/OUTPUT DEVICES

Three I/O devices are provided with the Kit and are selected by the 1/0 signal. The PIA at addresses
$8004 — $8007 is provided for user specified peripheral devices. Its input/output lines are brought out ot the J1
edge connector. A wire-wrap area is provided for any buffering or interface circuitry that might be required. In
normal kit operation, the PIA at addresses $8020 — $8023 is used to interface the Keyboard/Display to the
MPU. If a terminal and the MINIbug monitor are used, this PIA is also available (via the J2 edge connector) for
user specified I/O. The ACIA at memory locations $8008 — $8009 is used to interface with the Audio Cassette
circuitry on the Keyboard/Display Module, but can alternatively be used to interface to serial RS-232 or TTY
type terminals (with the MINIbug monitor) if desired. Note that the address lines A2, A3, and AS are applied to
the chip select lines of the $8004 PIA, the ACIA, and the $8020 PIA, respectively. This insures the selection of
only one of the.three I/O devices when the /O signal is active. Note also that connecting the A2, A3, and A5
address lines to the PIA and ACIA chip select lines will cause a wider range of addresses than is required to be
selected. For example, when the 1/0 signal is low (A15, Al4, A13 = 110) and AS is high, any address in the
range $8020 — $802F may be present on the bus, depending on the states of AO— A3. The $8020 PIA does not
decode the A2 or A3 lines; therefore, addresses in the range $8024 — $802F will also select this PIA. However,
it is not necessary to use additional decoding if the use of these addresses is avoided in the user program.

2-4 SYSTEM CLOCK

The Kit uses a 614.4 kHz MC6871B system clock. The frequency was selected in order to provide a
simple means of obtaining a 4800 Hz reference frequency used by the 300 baud serial data rate tape cassette
circuitry. The 4800 Hz signal is obtaining by dividing the MC6871B’s 2fo output (1.2288 mHz) by 256 with an
MC14040 counter. The 4800 Hz signal is applied to the cassette interface circuitry, along with the ACIA
outputs, via the J2 edge connector.

2-5 KEYBOARD/DISPLAY

The Keyboard/Display Module is provided as a separate printed circuit board in order to facilitate the
use of other terminals and to make the U21 PIA readily available for eventual expansion of the system. The
Keyboard/Display Module connects to the Microcomputer Module via a ribbon cable and connector provided
with the Kit. A scanning technique is used on both the display and the keyboard in order to minimize system
cost. Since operation of this circuitry is intimately related to the control program, refer to the software
discussion (Section 3-4) and the assembly listing, as well as the schematic diagram of Figure A3-b with the
following description.

2-3

The scanning procedure uses lines PBO — PBS of the PIA, corresponding to SCNREG in the JBUG
assembly listing. The digit patterns to be displayed are put out on lines PAO — PAG6 and are designated as
DISREG in the listing. The JBUG monitor program alternates between refreshing the display and checking for
a key closure in the following manner.

The OUTDS subroutine places the digit pattern for the left-most display on PAO— PA6 and then sets
PBS5 high, causing that digit to be lighted. During this time, PB4 — PBO are low, thus the other digits are off.
This digit of the display is held on for approximately 1.0 ms, after which the pattern for the second digit is put on
lines PAO — PA6. PBS is switched low, and PB4 is taken high to select the second digit. This sequence
continues until the right-most digit has been selected, at which time the program goes to the KEYDC subroutine
to check for key closures. The blanking pattern ($FF) is placed on PAO — PAG6 to blank the display so that lines
PBO — PBS can be used to interrogate and decode the keyboard. Following the keyboard check, operation
returns to the display sequence. The refresh rate is fast enough that the displays appear to be on continuously.

An MC14539 CMOS One-of-Four Data Selector (U10) is used to sequentially select each column in
the keypad matrix and route it to PA7 for testing by the monitor program. The address data for selecting each
column is output to the Data Selector on lines PB6 and PB7. Refer to the description of the monitor program in
Section 3-4 for details of the keyboard decoding technique. Note that CB1, a PIA interrupt input, is directly
connected to column 2. This allows the E key to be used for generating an NMI interrupt for escaping from
‘‘blown’’ user programs. The MC75452 buffers serves to increase the PIA’s drive capability.

2-6 TRACE (EXECUTE SINGLE INSTRUCTION)

A hardware trace function is provided that permits a user’s program to be executed one instruction at
a time. Results of the execution, including MPU Register contents, can be examined between each Trace
command. The Trace function will operate on programs in either RAM or ROM and is useful as a debugging
aid. The circuitry consists of an MC8316 Counter and two MC7479 D-flip-flops connected as shown in Figure
2-6-1. Refer to this figure also for the associated timing waveforms.

When a Trace command occurs, the system is normally in the Register display mode from either a
previous Trace or having run to a Breakpoint. Thus, the user’s Register values are stacked and the monitor
program is alternating between refreshing the displays and checking for new key closures. The user Program
Counter value saved on the stack is pointing to the next user instruction to be executed. Invoking a Trace
command at this point causes the MPU to start the Trace Counter (via CA2 of the Keyboard/Display PIA) and
then execute a Return from Interrupt (RTI) instruction. This causes the MPU to reload its Registers from the
stack and begin executing the next user instruction. In the meantime the Trace counter is counting machine
cycles. The eleventh cycle after the counter is started will be a fetch of the op-code for the next user instruction
(RTI takes ten cycles to execute). The Trace circuitry detects the eleventh cycle and generates a low going NMI
signal. Since the shortest instruction is at least two cycles long, NMI will always be low at the end of the first
instruction and will cause a return to the JBUG monitor program via an NMI interrupt. The NMI service routine
sets CA2 back high, resetting the counter in readiness for another command. The NMI service routine is
described in Section 3-8 in greater detail. From the user’s point of view, closure of the N (Trace) key causes the
system to execute one instruction and then stop so that the results can be examined.

2-7 AUDIO CASSETTE INTERFACE

Circuitry for interfacing an ACIA to an audio cassette recorder/player is included on the Keyboard/
Display Module. This circuitry enables the user to store and retrieve data on ordinary audio cassettes at a 300

2-4

sunojaaep Bupwuy] pue Aynoas) 99ed] “1-9-Z IHNDIL

N\
E

/
a
w
o
T
[

/

| AR
oo =
e e T T o 0 o I o 0 K __Arg I
114 L

=N NG+

td 2 ld 04 HW
d 91£89I NG+
0 4| 21 5zn 43|
avzn 135 4
Y

20—d»

w

_ A AAY 0 a0 AG+
%01 % [l 0 9 < 380
INN AG+ epen Vid
_ —{0 a p——< wouy
30l
. AR
GLYVIIW Z/L
AG+

2-5

baud (30 characters per second) serial clock rate. Data is stored on the tape using the ‘‘Kansas City Standard”’
recording format, so-called due to its formulation during a symposium sponsored by BYTE Magazine in Kansas
City, Missouri in November, 1975. The format is designed to eliminate errors due to audio system speed
variations® and has the following characteristics:

1. A Mark (logical one)® is recorded as eight cycles of a 2400 Hz signal.

2. A Space (logical zero) is recorded as four cycles of a 1200 Hz signal.

3. Arecorded character consists of a Space as a start bit, eight data bits, and two or more Marks as
stop bits.

4. The interval between characters consists of an unspecified amount of time at the Mark frequency.

5. Inthe data character, the least significant bit (LSB) is transmitted first and the most significant bit
(MSB) is transmitted last.

6. The data is organized in blocks of arbitrary and optionally variable length preceeded by at least
five seconds of Marks.

7. Meaningful data must not be recorded on the first 30 seconds of tape following the clear leader.

A control program in JBUG causes this format to be followed and incorporates the following
additional characteristics:

1. At the beginning of tape (BOT), the ASCII character for the letter *‘B”’ is recorded following
1024 Marks (approximately 30 seconds).

2. The ““B” is followed by one byte containing the block length (up to 256 bytes in a particular
block).

3. The next two bytes recorded contain the starting address in memory from which the data is
coming.

4. Up to 256 bytes of data are then recorded and followed by 25 marks and the ASCII character for
the letter “‘G’".

The control program uses the additional features to insure that the Punch and Dump functions are performed in
an orderly manner (see the explanation in Section 3-7 for additional information).

The cassette inferface circuit diagram of Figure 2-7-1 serves as an aid to understanding the following
description of the Punch and Load operations. The Punch (transfer of data from the Microcomputer Module’s
memory to tape) and Load (transfer from tape to memory) commands are accomplished by a combination of the
control program, the MC6850 Asynchronous Interface Adapter (ACIA), and the cassette interface circuitry.

The ACIA is, in effect, a bus-oriented, universal, asynchronous receiver/transmitter (UART). In the
transmit mode (Punch), it accepts parallel 8-bit data from the MPU bus, adds the formatting start bit and stop
bit, and then converts the data to a serial binary stream (Tx Data in Figure 2-7-1). The desired format is
established by instructions from the MPU as it executes the Punch command. In the receive mode (Load), the
ACIA accepts an incoming serial data stream (Rx Data) and a sampling clock (Rx Clk). It strips off the start/stop
bits and passes each incoming byte to the MPU for transfer to memory, again under control of the MPU as the

%The circuitry provided with the kit will accommodate speed variation of approximately =25%.
%Logical ones and zeros will be alternatively referred to as Marks and Spaces, respectively, in accordance with serial data transmission
conventions.

Anina11g adepelu| 9SSED OIPNY *|-2-Z IHNDIL

_ NG+ =
o 2 _ dOVLGLOW
[Lile) ns
eleq xy < o o} o a 90
ELOVLOW 8EGPLOW Lyl
egLn eLLn ou |
— O a °] v 2no
zul
s - zou Ln
_ 1o voY
054
NS+
AMN—
vZ3 =
AG+ _
2 ayin
o] > zul
9LOVLOW zino
zino —
cavilow £LOPLOW L — —]
A1D xH peLN atin astn epLn Lyl O o
LN
L L O 11D [3e]
L8OVLOW ° B © s a >Om+ H 4 vZOPLOW
= zo 6N
sy » 9LOVLOW
/ AS+ 10 A0
515 LgH
BUOYAOIDIN 8vd —
o8 Vv d 9ELN
z 1z o] 2 agLNn
oy LBOVLOW
i ELOPLOW L8OV LOW
oo n qzLn
—1 A
oA o] a
£50P1OW = [
1%
X 910%LOW
vvd o5 0x LOEEDW 4
ozn
O AS+
vy prin

LOEEON

ELOPLON
ezin

'@

LBOVLOW

auoydiey

eleq X1

(zH 008Y)
A0 XL

2-7

program executes. The ACIA’s Request-to-Send, RTS, acts as a gating signal to switch the interface circuitry
between the Punch and Load modes. The reference documents may also be referred to for additional details on
the ACIA’s characteristics.

Timing waveforms corresponding to the appropriate signals in Figure 2-7-1 are provided as Figures
2-7-2, 2-7-3, and 2-7-4 as an aid to study of the cassette interface circuitry.

During a Punch operation the interface circuitry operates on the serial data to convert each logical
one (Mark) to an 8-cycle burst of 2400 Hz signal and each logical zero (Space) to a 4-cycle burst of 1200 Hz
signal which is then recorded on tape.

The circuitry reverses this procedure during a Load operation; it decodes the incoming frequency-
modulated signal in order to recover the binary data and a sampling clock.

In Figure 2-7-1, the MC14053 Multiplexer/Demultiplexer, U20, (Data Router, for simplicity) is
used to steer signals to their required points during both Load and Punch operations. For instance, during
Punch, B and C are high while A is derived from the binary data on Tx Data. For this combination of control
signals Y is connected to Y1 (because B is high); thus the 4800 Hz Tx Clk signal from the Microcomputer
Module is applied to the clock input of the MC14024 Counter, U19. Also, because C is high, Z is connected to
Z1, but this signal is not used during Punch. The 2400 Hz and 1200 Hz signals are obtained by selecting either
the +2 (Q1) or the +4 (Q2) outputs of the Counter as it is clocked at 4800 Hz.

The signals at X0 and X1 are 1200 and 2400 Hz sine waves obtained via the bandpass filters of U16a
and U16d. One or the other of these signals (depending on the Tx Data logic level at A) will be level shifted,
attenuated, and applied to the microphone output terminals.

TxClk
(4800 Hz)

RTS

Counter Outputs

w0 L L L L LW L L
?2200 Hz | | I l I | | l I

s I s I e BN s T m N
= [
I i

Tx Data
(Transmit Data)

Tx DP __—1 I—_
{Phased Tx Data)

W /N /N N N N AN\ N\ A\ /\
P AV Ve VD VA VA VA VA WA W A W

Q2P Fifter g i PN . N e
IERE N N N N——" N—"

Fskouout __ /N TN PN N PN AN
s NS ~~— ~— ~— ~~ N\

—

FIGURE 2-7-2. Transmit Waveforms

2-8

LT 1 |

N/
sweroe [L L LT 1] L
e U U U YU L L
|
I

Rx Data
(Output 0 of U11b) l
Counter Reset n
(Output of U11hb)
Caunter Outputs ‘_—I——L_—‘—‘—,_L_——J—
at r
Q2 I I I L
a3 J I
" 1l
Rx Clk I

{Output of U13d; I
Same as Q3
via Data Router}

FIGURE 2-7-3. Receive Waveforms, Space-to-Mark Transition

AN N N\ PN P yANNY4

“Squared” Data | I I_
Output of U17
Output of I | I I I
U11a One-Shot
Rx Data _ l I
{Qutput Q of U18a)
Counter Reset
{Output of Ut1b)
Counter Qutputs
o | | | f I
Q2 |
@ T]
a4 rL

Rx Clk
(Output of U13d;

Same as Q2 via |
Data Router)

FIGURE 2-7-4. Receive Waveforms, Mark-to-Space Transition

29

Note that the 1200 Hz square wave is obtained from the output of U12a rather than the Q2 output of
the MC14024. This, together with the gating of U13 and the delay associated with U12b, insures that switching
of output frequencies will occur only when the outputs of U16a and U16d are at essentially the same voltage.
(Refer to the timing diagram of Figure 2-7-2.)

During a Load operation, the incoming signal from the cassette earphone is filtered, amplified and
squared by the U17 Line Receiver. (U17 is connected as a Schmitt trigger to reduce noise problems.) This
results in a signal, at digital levels, that varies between 2400 Hz and 1200 Hz according to the one-zero pattern
that was recorded on the tape. This frequency-modulated signal is then converted to logical ones and zeros by
the pulse width discriminator formed by the U11a MC14538 Monostable Multivibrator (or One-Shot) and the
U18a type D flip-flop. Incoming signals less than 1800 Hz are decoded as zeros; frequencies higher than 1800
Hz are decoded as ones. The Received Data will be present at the Q output of Ul8a.

The required Rx Clk signal, a positive transition at the mid-point of each bit-time and a negative
transition at the end of each bit-time, is generated as follows:

During Load the digital level 2400/1200 Hz signal, instead of the 4800 Hz Tx Clk signal, is steered
to the Counter clock input. The Counter’s <8 (Q3) and 16 (Q4) outputs are connected to the inputs of U14b
and U14a, respectively. The control inputs of Ul4a and b are connected to Received Data and applied to the Set
input of U18b. The Output of U18b triggers the Counter Reset one-shot, U11b. Hence, either the +8 or +16
Counter output is steered back (via X) as a reset, depending on whether the data is a zero or a one, respectively.
The Counter is also reset by every Mark-to-Space transition via the U11b One-Shot. The Counter’s +4 and +8
outputs are connected to Z0 and Z1, respectively. These connections combined with the reset signals result in a
positive transition at the Z output of the Data Router after either four cycles of 2400 Hz or two cycles of 1200
Hz. Thus, the Rx Clk (Z gated by RTS) has a positive transition in the middle of each bit-time and a negative
transition at the end of each bit-time.

2-8 KIT EXPANSION

Provision is made for buffering circuitry to allow the Microcomputer Module to be implemented
into a larger system. The buffers and pinouts selected on the bottom edge connector are compatable with the
EXORciser so its I/O and Memory Modules can be used with this kit. The direction of data flow across the data
bus buffers is controlled by the MC7430 NAND gate, U7. This decoding provides for data flow off the board to’\
the external system when there is a Memory Read Cycle at an address that is not decoded by the devices on the \
Microcomputer Module itself. Note that the signal RAM decodes the lowest 8K bytes of memory which are
reserved for on-board memory (MCM6810%). Should the user want to assign the lowest 8K of memory
addresses to off-board memory, the following changes are required:

Remove the MCM6810’s decoding addresses 0000, 0080, 0010 and 0180; remove the
signal RAM from pin 4 of the MC7430 and tie pin 4 to +5 V. The signal provided at the bus
connector called RAM can be used on outside memory to indicate an MPU access to an address in
the bottom 8K bytes of memory which now resides off the module.

Provision has been made for using a zener diode (1N4733) to generate a —5 V supply for the 2708
PROMs (if they are used) from —12 V in case this kit is operated in an EXORciser-type system which does not
have —5 V available. Should —5 V be available, the zener diode and associated 68 ohm resistor can be omitted
and the —5 V brought in through the bus connector.

2-10

CHAPTER 3
SOFTWARE DESCRIPTION (JBUG MONITOR)

3-1 GENERAL DESCRIPTION

The control and diagnostic capability of the MEK6800D2 Kit is provided by the JBUG monitor
program resident in the MCM6830 1K x 8 bit ROM supplied with the Kit. The characteristics of this program
are described in the following sections. An assembly listing of JBUG is included (Appendix 1) and may also be
referred to in studying the flow of the program.

Several RAM locations are used for temporary data storage and as flags by the monitor in
communicating between the various routines. Some of the more significant ones are described below and are
referred to in the description of JBUG.

SP A RAM location in which the user’s Stack Pointer is saved whenever the monitor resumes
($A008) control. The user’s Stack Pointer is required for locating user Registers on the stack and to
restore these Register when returning to the user program.

DISBUF Eight RAM locations used as a buffer to hold the current values being displayed. In the first six

($A00C) locations, the high order 4 bits of each location represent the display digit-count while the low
order 4 bits contain the value that is to be displayed on that digit. For example, the high order 4
bits of the sixth location in DISBUF identify the right-most display. The last two locations in
DISBUF are used for temporary storage of data that is input from the keypad during a Memory
Change function.

DIGIN4 A flag that is set to one (LSB) when at least four hex digits have been entered from the
($A014) keyboard (as in Memory Examine)

DIGINS A flag that is set to one (LSB) when six hex digits have been entered from the keyboard
(A015) (as in Memory Change)

MFLAG A flag that is set to one (LSB) when the M key is depressed to invoke the Memory
($A016) Examine Mode.

RFLAG A flag that is set to one (LSB) when the R key is depressed to invoke the Register Display
($A017) Mode.

NFLAG A flag that is set to one (LSB) when the N key is depressed to invoke the Trace
($A018) Mode.

VFLAG A flag that is set to the number of breakpoints (up to five) that have been set.

($A01D)

XKEYBF A pointer to the next empty location in DISBUF where the next hex key entry will be stored.
($A01A)

The flow of JIBUG is straightforward and is shown in Figure 3-1-1. After release of the RESET
button, the monitor goes through an initialization sequence in which the stack pointer is initialized to $A078,

3-1

the PIA for the Keyboard and Display is configured, the flags which communicate between routines are cleared
and a dash (-) is placed in the first location of DISBUF to be displayed on the lefthand digit as a prompt to
indicate that the MPU is executing the JBUG monitor. After initalization the display is scanned; this involves
displaying the contents of DISBUF (first six locations). The display scan takes about 6 ms (6 digits at 1.0 ms per
digit) after which the Keyboard is scanned and decoded (KEYDC). A test is made to see if any key is depressed
and if none is found the program returns to OUTDS. If a key is found to be depressed, a decoding process takes
place to debounce the key and to determine which key is depressed. If the key is a hex key (0-F) then its value is
placed in the next open location in DISBUF. If the key is one of the command functions, that command is
decoded and executed before returning to the display routine OUTDS. As shown in Figure 3-1-1, the basic
background program flow alternates between refreshing the display and checking for key closures.

{ RESTAR)

Initialize Stack Pointer,
PlAs, ACIA, and Flags.
Put the Prompt dash in
DISBUF

0UTDS '

Output contents of
DISBUF to Display

All
Digits
Refreshed?

KEYDC

Check for Key
Closures (KEYCL)

Key
Closed?

Decode Closure. Test
for Command or Data

Yes @ No
KEYDCH] |

Jump to Indicated Store Data. Return
Command Routine to update Display

l

FIGURE 3-1-1. Overall Program Flow for JBUG Monitor

3-2

3-2 RESTART/INITIALIZATION ROUTINE

When the RESET push button is released, the MPU outputs addresses $FFFE and $FFFF in order to
bring in the starting address of the restart routine. Because this system does not require full address decoding
(see Section 2-2), the top two locations of the JBUG ROM ($E3FE and $E3FF) respond with $E08D, the
beginning address of the restart routine, RESTAR. RESTAR first initalizes the Stack Pointer to $A078 and then
sets the NMI interrupt pointer to $E14E. The NMI interrupt pointer is placed in RAM so that the user can
change it and force NMI interrupts to do something other than go to the JBUG monitor (if this is done all
diagnostic capability of JBUG will be lost). The Keyboard/Display PIA, U21, is then configured to match the
hardware connections shown in the Keyboard/Display Module Schematic Diagram, Figure A3-b. The flags are
cleared and a code to blank the display ($17) is stored in all locations of DISBUF. A dash (-) is written in the first
location of DISBUF to indicate that the MPU is executing the monitor program. Flow then branches to the
OUTDS routine whose function is to move the contents of the DISBUF out to the LED displays.

3-3 DISPLAY ROUTINE

The display routine, OUTDS, is detailed in the flow chart of Figure 3-3-1 and begins at line 260
(address $EOFE) of the assembly listing. The first value in DISBUF is loaded into Accumulator A (Acc.A). The

(ouTDS >

Load X with Pointer to
Display Buffer.

0UTDS1 |

Get data into Acc. A, Point X
to Pattern Table, DIGTBL.

0uTDS2

Find Pattern by Incr. X, Decr.
A until A =0. Put Scan Count
into SCNREG. Delay 1.6 ms

]]
Shift SCNCNT bit one
position to right Initialize SCNCNT to $20 for

use in checking for Key Closure.
Jump to KEYDC.

‘ KEYDC ’

FIGURE 3-3-1. Program Flow for Output Display Routine

3-3

Index Register is then pointed to the beginning of DIGTBL, a table which has the correct bit patterns for the
character set to be displayed. The Index Register, X, is then moved to the table location corresponding to the
required pattern by decrementing Acc.A while X is incremented until Acc.A = 0. This pattern is then put out to
DISREG (the anodes of the seven segment display) as the first digit of display is selected by SCNREG (the
cathodes of the display).

This process is repeated for all six positions by moving a *‘one’’ through SCNREG as each position’s
data appears in DISREG. In this manner, the data in the first six locations of DISBUF are output to their
respective display positions and turned on for about 1.0 ms each (using the DLY1 delay loop. After all six
positions have been scanned, the variable SCNCNT is reset to $20 (corresponding to the left-most display) in
readiness for use during the next refresh scan cycle.

3-4 KEYBOARD SCAN AND DECODE ROUTINE

Following each display refresh cycle, the monitor jumps to KEYDC (line 302, address $E14E, flow
charts in Figures 3-4-1 and 3-4-2), the routine for scanning and decoding the Keyboard. The Keyboard is first
tested by subroutine KEYCL to determine if a key has been depressed. The display is blanked by storing $FF to
avoid flicker while the SCNREG lines are being used to interrogate the keyboard. Storing $3F to SCNREG
applies logical zeros to the rows of the keyboard matrix. KEYCLI1 then tests each column in sequence to
determine if a key is closed. (A depressed key will couple the zero on its row through to PA7 when tested.) The
KEYCL routine returns to the caller, KEYDC, with status information in Acc.A. If no key was closed, Acc.A
will contain $00 and the program will branch back to OUTDS for a display refresh. If a key was closed, the
program branches to a 20 ms delay (DLY20) to allow time for key debounce. KEYDCI1 then scans the keyboard
one row at a time using KEYCL to scan the columns looking for the closed key.

An exit back to OUTDS occurs (line 312) if the last row has been scanned without finding a closure.
If there was a closure, KEYDC2 compares the value returned in Acc.A with codes in table KEYTBL to
determine the key value. The KEYTBL values are related to the column and row position for each key. Each
key is represented by a value in the range 0-23 with the first 16 values representing hex numbers. Once the key
value has been found, the program enters the KEYDC4 routine to wait for the key to be released. Afterrelease is
detected, the program again delays for 20 ms to provide time for debounce. Line 327 begins decoding the key
value into either hex or command. Hex keys are entered into DISBUF at the location pointed to by XKEYBF
and then tested to see if four digits have been entered yet. If four digits have been entered, DIGIN4 is set to
enable further operations such as Memory Examine. Comand key values are routed to KEYDCS3, a jump table
resulting in a branch to one of eight locations depending on the command key depressed. The following action
is taken on each command key:

P-KEYDC8 The display buffer, DISBUF, is cleared and the program jumps to subroutine PNCH. Upon
return from the punch routine, a dash (-) is written to DISBUF (to inform the operator that the
punch has been accomplished) and the program jumps to OUTDS.

L-KEYDC9 The display buffer (DISBUF) is cleared and the subroutine LOAD is called. After the data has
been loaded from tape the monitor dash is written into DISBUF and the OUTDS routine called
to inform the operator that the load is complete.

3-4

N-KEYDCA Breakpoints, if any, are removed by clearing VFLAG. The NFLAG is set (LSB) to identify the
TRACE mode and CA2 of the Keyboard/Display PIA is switched low to start the trace counter.
An RTI instruction is then executed to reload the stack into the MPU and go on with the next
user instruction.

V-KEYDCB The DIGIN4 flag is tested to determine if it is in the clear or set breakpoint mode. If four digits
have been entered, the DIGIN4 flag will be set and the program will call the set breakpoint
(SETBR) subroutine and then go to the OUTDS routine. If the DIGIN4 flag is clear, then V
was a clear breakpoint command and the VFLAG is cleared thus clearing any breakpoints
which may have been set.

M-KEYDCC The MFLAG is set to indicate that the Memory mode has been selected. The DIGIN4 flag is
tested to make sure a full memory address has been entered. If four digits have been entered,

the Memory Display Subroutine (MDIS) is called; otherwise the program goes back to
OUTDS.

E-KEYDCD Causes the MPU to clear the DISBUF locations, write the monitor prompt dash to DISBUF,
and then branch to the display refresh routine. When a user program is in progress the E key
generates an NMI interrupt, providing an abort function.

R-KEYDCE The RFLAG is incremented to designate the Register Display mode and then the Register
Display subroutine is called.

G-KEYDCF The G key performs one of three functions depending on the current mode of operation. If the
monitor program is in the Memory Examine or Register Display mode, the G command causes
the next location to be displayed. If neither of these modes is in effect, G can be used to either
g0 to a user program or proceed from a breakpoint. These operations are described in greater
detail in the next paragraph.

When a G command is decoded the jump table directs program flow to KEYDCEF (line 431, address
$E20E) and the MFLAG is tested to determine if the current G key closure is a command to go to the next
memory location. If MFLAG is set, the Memory Increment (MINC) subroutine is called and will be followed
by the Memory Display (MDISO) subroutine. If MFLAG is clear, the RFLAG is tested to determine if this G
closure meant go to the next Register location. If RFLAG is set, the subroutine to display next Register
(REGST1) is called.

If neither MFLAG or RFLAG is set, the G closure is interpretted as a Go to User Program command,
from either a specific address or from the location indicated by the current value of the Program Counter saved
on the stack. The DIGIN4 flag is tested (line 436) to determine if a new starting adress has been entered. If
DIGIN4 is set, the program replaces the stacked value of the Program Counter with the new Go address is saved
in the first four locations of the Display Buffer, DISBUF. After checking to see if there are any breakpoints to
install, the MPU executes a Return from Interrupt (RTI) to the user program.

If DIGIN4 is clear, a proceed from current Program Counter mode is indicated. In this case, the
GETXB routine is called to determine if any breakpoints have been set. If no breakpoints are in effect, keyboard
interrupts are enabled (TGC, line 464) and the MPU execues an RTI back to the user’s program. If breakpoints
are indicated, the trace routine (TRACE, line 384) is called to step one instruction. On receiving the NMI
interrupt caused by the trace, the NMI routine (NONMSK, line 91) checks to see if both trace and breakpoint

3-5

flags are set. If set, JBUG then installs the breakpoints (TGC, line 464) and returns to the user’s program. This
procedure is necessary to insure that the instruction at the current breakpoint location will itself be executed on a
proceed and that the breakpoint location will contain the SWI the next time it is executed. This is especially
important when the breakpoint is in a loop in the user’s program.

{ KEYDC)

KEYCL

Blank Display. Setall
rows low.

KEYCL1 ‘ See Figure 3-4-2 for

KEYCL?T Flow Chart

Test for key closure

No
Closure?
Yes
Delay 20 ms, then
set first row low.
KEYDC2
Find Acc. A match in KEYDC1
KEYTBL Scan Keyboard columns
by calling KEYCL1. Last No
row ?
Yes
Key No
found ?
KEYDC4 Select next row
Wait for Key release, then l
delay 20 ms for
debounce. Test data for Pgint X to next empty location
hex or Command in DISBUF. Store key value
i there. Test for exactly 4 digits.

KEYDCT — §

Test for exactly 8 digits

KEYDC5 8
Digits?
Set BDIGIN4 Flag. Incr.
Find value of key in jump BISBUF Pointer.
Table, Branch to Command
Routine. Incr. BISBUF Pointer Set DIGINS Flag. Call
Memory Change Routine,
MDIiS1. Back up BISBUF
I Pointer two locations.
P =KEYDC8
L =KEYDC9
N =KEYDCA
V =KEYDCB
M =KEYDCC
E =KEYDCD @
R =KEYDCE
G =KEYDCF

FIGURE 3-4-1. Program Flow for Keyboard Scan and Decode Routine

3-6

KEYCL1

Test selected column.

Key
Closed?

Select next column.

All
Columns
tested ?

Returns with state of SCNREG
in Acc. A when key closure is
detected.

FIGURE 3-4-2. Program Flow for KEYCL1 Subroutine

3-5 MEMORY EXAMINE/CHANGE ROUTINE

Flow charts for the Display and Change Memory routines are shown in Figure 3-5-1. The Memory
Display routine (MDIS, line 483) causes display of the contents of the memory location pointed to by the first
four DISBUF locations. KEYBF, the pointer to the next empty location in DISBUF, is advanced by two in order
to point to locations six and seven in DISBUF when new memory data is entered. The BLDX routine, via a
jump through KEYD3F, builds a memory pointer from the data in the first four locations of DISBUF and loads
it into the Index Register. The data from the location pointed to by X is loaded into Acc.A, split into nibbles
(half-bytes or 4-bit words) by the MDIS2 subroutine, and stored in DISBUF locations four and five. Should a
memory change be required, MDIS1 (line 496) is called, which gets the new data from locations six and seven
in DISBUF (the keyboard entry) and stores it in the memory location referenced. A read of that location is then
performed to get the actual data (someone might try to alter a ROM) which is put back in DISBUF+4 and
DISBUF+5 to be displayed, giving the operator a visual indication that the change occurred. The Memory
Increment Subroutine (MINC) is called when the G key is used to advance to the next memory location. This
routine simply does a 16 bit increment of the four nibbles stored in the first four locations of DISBUF. MDIS is
then called to display the contents of the incremented address.

3-7

Update Keyboard Pointer
to DISBUF

MINC

MDISO ‘

Call BLDX to build memory
address from 1st two locations
of DISBUF. (Address in X Reg.)

Get new data from locations
6 and 7 of DISBUF.

Get memory address from

DISBUF.

!

!

Get memory address from

Increment memory address.
Format new addr. and store

Get data from that location.
Format for DISBUF (call
MDIS2). Store in DISBUF.

DISBUF.

in DISBUF.

{a) Display Memory

Store data to memory. Read
memory to verify data was

Increment DIGIN4 and
MFLAG.

changed.

Format data and store in
DISBUF locations 4 and 5.
Clear DIGINS Flag.

{b) Change Memory

(c) Increment Memory

FIGURE 3-5-1. Program Flow for Memory Display, Change, and Increment

3-6 REGISTER DISPLAY/CHANGE ROUTINE

The subroutine to display the registers (REGST, flow chart in Figure 3-6-1) transfers the User’s
Registers from his stack (User’s Stack Pointer is always saved in SP) to the display for operator inspection. The
registers are displayed in the order they are stacked: PC, X, A, B, C. A new register can be selected by pressing
the G key while in the Register Display mode. This causes the register display routine to be entered at REGST1
(line 556). TEMP2, aRAM buffer, is used as a counter in this routine to determine whether the register is one or
two bytes long, and which register to display next.

The Program Counter is displayed first so that when the Register Display routine is called from the
Trace or Breakpoint routine, the Program Counter appears automatically, allowing the operator to easily follow
program flow. REGST points the Index Register to the top of the user’s Stack where the high byte of the
program counter is located. REGST]1 clears the display buffer, DISBUF, and determines from the count in
TEMP2 which register is to be displayed. When the count gets to 3, all registers have been displayed and the
user’s Stack Pointer is loaded from location SP and displayed.

3-8

‘ REGST1 ’ ‘ REGST }

Load flag pointing to Initialize TEMP2 Counter
next register {TEMP2) and Acc. A to (-2).
in Acc. A Get S.P.into X.

1

Move Pointer to P.C. on
stack. Clear DISBUF.

implies either P.C. or
X Reg. Yes

No

Acc. A<0?

Get High Byte and display it. Implies

Stack ‘
. Implies Acc. A.

Fainter Acc. B,or C.C.

Get Low Byte and display it. High Byte of Stack Pointer

Incr. Acc. A.) to 1st two locations of Move Register pointed to on

DISBUF. stack to 1st two locatigns
of DISBUF
Yes No
Implies | .
X Reg Implies P.C.
- f k Poi
Decrement Pointer to stack. Decrement Pointer to stack. tLomr’\veE:ltZelgcastti:as o?lnter
Increment Acc. A. Display op-code. DISBUF.
increment TEMP2
Increment Acc. A.
Decrement Pointer to stack.
RTS
FIGURE 3-6-1. Program Flow for Register Display Function
3-7 PUNCH AND LOAD ROUTINES

The Punchroutine (line 609, address $E32F, flow chart in Figure 3-7-1) is entered via adecode of aP
key closure. Initially, the ACIA is reset causing the RTS signal to go low. This is followed by ACIA
programming to set RTS high, establish eight bits for data length, no parity, and two stop bits. Additionally, the
ACIA is set up to transmit serial data at one sixteenth of the clock frequency. A leader is then punched (using the
PNLDR Subroutine) consisting of 1024 ones.

3-9

uopouNy HONNJ 40} Mol4 wesboiqg “|-2-¢ IHNOIL

‘] 9 1150V yaung

g "22y a101s8Yy
‘Aemy ejeq Ing

sauQ GZ young

Apeay QY 1051531

eleq young

g '93y 8Aeg

HIL1NO

0EaNNd

ssauppy Bujuuibag ‘yi6ua
19019 ‘8 11ISY :ydung

3-10

* SZONNd
957 lenby v938 ~ VON3
bua ya0|g 1ag = yifua %o0)g 188
o 4662 < N
Xel+X *
* sau. e yaun,
aun, o yibua yooig 2je9 01aNnd
SE USd w HOLNO (4O INd) Jopeay young |
* HI1NO *
HY « 448
L =81y ‘doig-z ‘Aieq oN
e ‘1g-8 10y dmag "y|Jy 1asay

) G o)

After the leader is punched, the program compares the beginning address (located in $A002, $A003)
to the ending address (located in $A004, $A005). If the difference is greater than 256 (hex FF), the first block is
assumed to be 256 bytes long. When the difference is less than 256, the block length is set equal to the
difference.

Once this determination has been completed an ASCII ‘B’’ is punched on the tape. This is followed
by the block length (one byte). The next information stored on the tape is the two byte beginning address of the
data being put on the tape. After the block of data is outputted to the tape recorder, a leader of 25 ones data is put
onto the tape. At this point the beginning address is again compared to the ending address in order to see if all
the data has been punched. To provide a control to validate that all data has been recorded and for ease of
recovery, an ASCII ““G”’ is then punched on the tape. When the beginning address and the ending address are
different, another block of data must be processed. This cycle is continued until the beginning and ending
addresses are the same. Return to control is accomplished with an RTS instruction.

This routine destroys the beginning address originally put in the locations $A002 and $A003. When
the punch routine is complete the data in the ending address is unchanged and the beginning address locations
contain a value one greater than the end address.

The Load routine (line 674, address $E395, flow chart in Figure 3-7-2) is entered via a decode of an
L key closure. This routine sets up the ACIA to receive data in the same format that is used by the Punchroutine:
data length equals 8 bits, no parity, two stop bits. The Receive Clock mode is set to divide-by-one andRTS is set
low, indicating that the ACIA is now ready to receive data from the cassette interface circuitry.

Each data byte is brought in by calling the Input One Character routine, INCHR (line 699, address
$E3CO0). This routine continuously checks the ACIA’s Status Register until there is an indication that a byte is
ready to be transferred. The MPU then fetches the byte from the ACIA Data Receive Register and returns to the
LOAD routine with the data in Acc.A. The data is then tested to determine if it is an ASCII “‘B”’ or *‘G’’. When
a ‘‘B’’ is received, the program branches to the Read Data Block routine, RDBLCK. The block length is read
and saved in Acc.B and the beginning address is read and stored into locations $A002 and $A003. Data in the
current block is then brought in and stored to the indicated memory locations. After the block of data is read, the
software branches back to the BILD Routine to look for another block of data or an end of file command. When
other blocks of data are present in this file, they are processed as described above. Eventually, the end of file is
reached. End of file recognition is accomplished by recognizing an ASCII ‘“‘G’’ in the BILD routine.
Recognition of ths ‘G’ provides the means for orderly exit from this routine by the execution of the RTS
instruction.

3-8 INTERRUPT HANDLING ROUTINES

The JBUG monitor program handles all three types of M6800 interrupts: Software Interrupt (SWI),
Maskable Interrupt Request (IRQ), and Non-Maskable Interrupt (NMI). In handling interrupts, the MC6800
completes execution of its current instruction, saves the results on the stack and then outputs the appropriate
vector address. At that address it expects to find the beginning address of the selected interrupt service routine
(see the reference literature for more details). Beginning addresses of the service routines are placed in the
vector locations during program development.

The IRQ interrupt is reserved for the user. In servicing an IRQ interrupt, the MPU fetches the address
$E014 from memory locations $E3F8 and $E3F9 near the top of the JBUG ROM. Beginning at location $E014
(line 83), the MPU loads the Index Register with the contents of RAM locations $A000 and $A001, then

3-11

< LOAD ’

Set up ACIA for 8-Bit;
No Parity; 2-Stop Bits;

RTS =0;
Divide-by-One.
BILD i
RDBLCK {
Get next Character
Get Block Length (INCHR) | _ ARy
T
Save in Acc. B as Byte Test for Start-of-Block = “B"
Count Y or End-of-File = “G" Get Character from ACIA
__________ Characters and Save in Acc. A

Get Starting Address (Next
2 char. } (INCHR)

Put Strt. Addr. in X for
Memory Pointer and Save
in $A002 & $A003

Get next Character
(INCHR)

Store to Memory; Decr.
Byte Cnt.

FIGURE 3-7-2. Program Flow for LOAD Function

executes an indexed jump. This, in effect, maps the IRQ vector through the JBUG ROM, allowing the user to
reach his interrupt service routine by loading its beginning address into RAM locations $A000 (high order byte)
and $A001 (low order byte).

The MPU is directed to location $E019 (line 91) by NMI interrupts. The flow of the subroutine
located there, NONMSK, is shown in Figure 3-8-1. NONMSK can be entered due to either a Trace command
(breakpoints may be either active or clear) or because of an interrupt from the keyboard PIA, U21. If the
interrupt was not a Trace command, then the trace flag, NFLAG, is cleared and the program flows to NONMK 1
(line 100). The MPU loads the Index Register with the contents of memory locations $A006 and $A007 and
then jumps to that location to begin executing the Keyboard Service Routine, KEYDC. This address was loaded
into $A006 and $A007 during the Restart initialization sequence. The user may cause NMI interrupts to vector
to other locations by loading the desired starting address into $A006 and $A007.

3-12

Bujipuey 1dnuejul IMS PUE IWN 10} MO weibold *1-g-€ FHNDIL

400A3% Myl

Sg.Lno ol

aunnoy Aeidsig o1 dwng

1S93Y ‘Aeidsig
Japsifiay |18 "9v1d4Y
135 "131ulog }IelS aneS

weifouy
Jas 012eg

sydnasalu|
pieogAa)j ajgeu]
‘sjulodyeaig ||e |{eisu|

dsiat

*sap02-do Jissul-ay
‘sjujodyeasg anoway

bej4 g -gisa)

‘auQ Aqg yaeig uo 94 dn yaeg
'sidnusayu| pieoqAsy ajqesig
*181U104 }2€1S SJas[) aneg

A HIMS v

OIN Myj

J0AIN 0L

fej4 1uodyessg
129 "OVId4N Jes|]

aulinoy adinlas
pJjeoqAay o) dwnp

SaA ON

p4gAaY woyy
puewwoy)
3, saldw]

apoyy 8984] 10} 158
‘sydnasedu) |WN 8|qesig
“131U104 391§ §,135() AES

3-13

If the Trace flag (NFLAG) was set, the program checks to see if breakpoints are active. If
breakpoints are active, it is assumed that the purpose of the Trace command was to get off of a breakpoint. In
this case, the breakpoints are installed, further keyboard interrupts are enabled, and flow is passed back to the
user program by execution of an RTI instruction. If there were no active breakpoints, it is assumed that the
Trace command was invoked in order to execute a single instruction. In this case, the stack pointer is saved in
SP and then the program jumps to the Register Display Routine.

Software Interrupts (SWI) are used by the JBUG monitor to implement breakpoints (up to a
maximum of five are allowed). Upon entry from a SW1 instruction SWIR (line 107), the user’s Stack Pointer is
saved in location SP for use by the Register Display Routine. Keyboard interrupts are disabled so that the
normal Keyboard and Display scanning functions do not cause multiple NMI interrupts. Lines 109-113 cause a
16 bit decrement of the Program Counter saved on the Stack so that it points back to the instruction that was
replaced by the SWI used to make the breakpoint. The subroutine GETXB is called (line 145) to examine the
VFLAG and determine if any breakpoints are set. If there are, TZONK removes all of the SWI instructions so
that the operator doesn’t see them. The address of the breakpoints and their op-codes are saved in the
Breakpoint Table, BPTAB. The Register Display Routine is then called so that the operator can examine the
registers on the stack.

3-14

PRGE

00001
nonoz

00003
HInne
noons
onaoas
noon?
000ns
nooone
goa10
I]
onnl12
noo13
pnoilg
onots
aonies
00017
nonia
nnni9
aoo20
gonz1
npnoze
oonz3
00024
onnzs
Non2ek
nooz2y
nnogze
oonz9
aao30
noo31
oons32
noo3:3
o0onz24
oon3s
aon37y
oon3s
noo3s
ooogdg
HINES!
DITHE ¥
onog4:z
aoog44
00045
HINIE Y
00047
00048
nonga
aognso
oonst
onosz

1]

no1

APPENDIX 1

ASSEMBLY LISTING OF JBUG MONITOR

JBUG

NAM JBUG
*+ REVY 1.8 9-6-76
»>

*A MONITOR PROGRAM WITH AN INTERNAL KEYBORRD-DISPLAY
*

* AZSEMBLED ON THE EXORCISER FOR MOTOROLA

¢ INC. -—- FALL OF 786

: COPYRIGHT 1976 BY MOTOROLA SPG

* oPT .0 ZY¥YMBOL TABLESOBJECT TRAPE
.

*

++COMMAND SYMBOLS

++eeP — PUNCH DESIGNATED MEMORY TO RAUDIO CRASSETTE
+eeel - |LOARD AUDIO CRSSETTE TO MEMORY

seoeN — TRACE ONE INSTRUCTION

» UZES NMI INTERUPT

* N CLERRS ANY BRKPTS IF SET

* SINCE TRACE USES HRARDWARE IT CAN

* TRACE THRU ROM AND INTERUPTS

+oeey — ZET AND CLERR BRERKPOINTS <FIVE RLLOWED>

» IF THE RDDRESS NOT= ZERO THEN R BRKPT

*> I= INZERTED AT THE RDDRESS. IF THE

* ADDREEE = 0 THEN ALL 5 BRKPTS RARE CLERRED.

+seeeM — MEMORY EXAMINE RND CHANGE
+*seet - EZCAPE <ABORT)
+eeoR — REGISTER DISPLRY
* ORDER OF DISPLAY IS: PCsXsRAsBsCCoSP
>0 TO UZERE PROGRAM-ADVYANCE - PROCEED.
IF ADDRESE NOT = 0 SET USER‘S PC TO
NEW YALUE RND 50 TO USER‘S PROGRAM.
IF ADDRESS=0 THEN RETURN TO PROGRAM AT
PREVIOUS LOCRTION <PROCEED MODE)>.
IF IN Rs5 MERNS ADYRANCE TO NEXT REGISTER.
IF IM MsG MEANS ADYANCE TO NEXT MEMORY.

+
L 4
:
@
|

L AR 2K 2K 20 2B 2R N

PEPPPLPPS 0000000000000 0000000000000 50000000000000 ¢
*+CONTROL STACK AT $A078ee

*+ RAM ITARTS AT $A00D

++ ROM IZ AT LOCATIONS BEOQDO-SE3FF

+¢ ACIA IS AT $8008-3009

+¢ PIR IS AT $3020-3023

PLPPL000000 000000000000 0000 005000000000 0400000000000
PPPPPIPSGP0 0000000000000 P000PP P00 000000000008 000000
&

+ THE RESTRART ENMTRY IS AT LABEL “RESTAR” AT

+ LOCATION $EO0SD.

*

PEEPLLL0000 000000000000 80 000000000000 800000000000000

00054
00055
00056
000s?
00058
00059
00060
00oet
nope2
00063
00064
DO0ES
0006s
00067
onoes
00063
hilirdi]
nooyi
ooonvy2
nooy3
00074
0novs
naove
poov?y
onovs
gooye
ooaR0
0nost
o032
noon23
nno24
noonas
noonzé
aoney
noonzg
noos9
aooso0
00021
noos2
00033
0nos4
n003s
=T
000e?
o028
aonas
o100
o010l
no1n0z2
gn103
00104
no10ns
no106
nn107

oo2

EOOO

EQOO
EO0O01
E004
EO00S
E0QD8
EOOB
EQOE
EO11
E013

EO014
EO1Y

E019
EDQLC
EO1E
E021
Ene3
ED2E
ED28
EozA

EN2D
EQ320

ED22

JBUG

08
FF
08
FF
BO
F2
FE
A7
3F

FE
=13

BF
3D
7D
27
7F
8D
27
7E

FE
&E

BF

ROLE

AROOR
ROOB
ADDA
RO1E
o0

ROOO
on

ROD2
56
AC18
0R
RO18
3B
cE
E226

RO06G
oo

OrRG $EO000
-
+++oROUTINE TO CALCULATE OFFSETSeees
*+o3ETUP STRACK AS FOLLOWS:
. B-RE6 (SP+2> = HIGH BYTE OF DESTINATION ARDDR
* A-REG (SP+3> = LOW BYTE OF DEST RDDR
-+ #—REG (IP+4.5)> = ADDR OF OPCODE OF BRANCH
.

INSTRUCTION
INX
ET™ BPRDR STORE OFFSET ADDR
INX
ET™ TEMP1 ADDR OF NEXT OP CODE

SUB R TEMP1+1 LOW BYTES
TBC B TEMP1 HIGH BYTES
LD BPRDR GET OFFSET RDDR

ETRA R 08X CHANGE OFFSET
W1 STRCK AND DISPLRAY

+ooREGISTERS ON STRACK CONTRIN THE FOLLOWING:
s++++INDEX — HDDR OF OFFSET BYTE THRT WAS CHAMNGED
seeeoft RCCM ~ VALUE OF OFFSET

+eeeeB ACCM — 00 - FORWARD BRANCH WITHIN RANGE

*oo0e FF — REVYERSE BRANCH WITHIN RANEE

o0 —ANY OTHER VARLUE IMPLIES A BRANCH

*ooee guT OF RANGE.

PEPPPCE S PO OO PSPPI E0GPO P00 0L PGS0 0000000000000 00000

-

+ HERE ON IR2 INTERUPT

*

+oeeIRE INTERRUPT SERVICEeess

10 LD 10% PICK LUP PEEUDO YECTOR
JMP x 0 7O IT

.

+ HERE ON HMI INTERUPT

* MARY BE TRACE OR A TRACE TO PROCEED

» OF A KEYEOARRD INTERLUPT.

»

sosoNMI INTERRLUPT SERVICEe®ese

NOMNMEK =TE =P STRYE UZER’S ESTRCK PTR
BER DIENMI DISABLE NMI INTERUPTS
TET NFLRG TRACE MODE?
BER MONMK 1 NO

TNMI CLR NFLRG RESET FLRG
BER GETXE GET THR RDDR AND YFLAG
RER TDI=SP NO BPs DISPLRY REGS
JIMP TGER BP RCTIVE

+« MUET BE KEYBORRD INTERUPT

NONMK1 LDX MIO
JMP b DECODE KEYBOARRD

HERE OMN Z0OFTWARE INTERUPT
UZURLLY A BREAKPOINT

L 2K 2R BN

+*+eeZh] ZERVICE ROUTINEe®eee
EWIR I P ZAYE USER'E =P

Al-2

0ol oS
00109
oni1o
o111
gniiz
0n113
0114
no11s
ooil1e
o117
antis
gni1s
ago1z2o0
noiz21
aoi1z2
noni1z3
noiz4
noizs
0n12e
nnlzv
nniza
gaizs
anLzo
o012
ao13e
0123
on1=4
on1zs
a1z
o127
ao1zs
nni123
o140
o141
ooi142
0014z
nig44
noni4s
noi14s
00147
gn14:z
o149
oonisao
oo1st
no1se
1S3
o154
oo1ss
an1s5es
onsy
on1s=
gn1ss
Ooién
nni1el

oo3

EQ35
E037
ED33
E03A
E03C
EO3E
E040
ED42

E044
E047

E04S
EON4R
E04D
ED4F
E0S1
E0S4
ENSE
E0S8
EOSE

ENSE
EQSF
EQsD
E0&1
Edse

m
]

EQE
EQ&sS

[0 S0 N
0 Lo

E0OSAH
EQEC

EQSE
EOVO

E072
E074

JBUG

aD
30
6D
26
&R
&H
2D
27

FF
A&

21
cer
EE
A7
FE
2D
=
BF
7E

[R v

D o

]
=

05
02
05
113
21
14

RO1E
0z

3F
ry
oo
o
AO1E
02
EC
AO02
E2 DR

ROz2
ROL1D

F7
0=
ns

3=
s

ER

6 FC

BER DISNMI DISARBLE NMI INTERRUPTS

TEX DECR PC BY 1

TET B X BERCKUP PC OMN STRCK
BME *+4

DEC S

DEC B X

BIR GETXB GET TAR ADDR AND VYFLRG
BER TDIEP MO BRKPTSs 50 DIZEPLAY REGES
*

+ REMOVE BREKPTS WHILE WE ARE IN JBUG., THEY

+« WILL BE RESTORED ON R -0 OR PROCEED
*
seeesoeHERE TO REMOVE BREAKPOINTSeesesses
TZONK ETX BEPALR ZAVE IN TEMP
LR A Z2»x SET OF CODE TO RESTORE

+ SAFEGUARRD AGRINST MULTI DEFINED ERKPTS
»
CMP R #33F

BER GENR BERAMCH IF MULTI-DEF
LI Dsi RET ARDIR OF BKFT
ETRA R s REZTORE OP CODE
LD BPARIIR GET TRELE POSITION
GENA BER RDD=x GET NEXT PO=ITION AMD DECB
ENE TZ0OME 0 AGRIN
TDIZP =TE =P ZAYE UZER’E ETRCK POINTER

AMF KEYDCE o0 DIEPLAY REGE
»

++++ZUBROUTINE TO GET NEXT THRELE ENTRY
*

AODZx IM®

INX

IMX

IEC B DECR CTR

RT= LET CALLER I CTR CHECEK

*
+++eZlE TO SET TRELE ARDDR IN » YFLAG IN E
*
BET®E LI #BPTHE =ET THELE PBA=E RDDR
LR B “FLAG
RT=
.
++ZUEROUTINE TO ZET A BRERKPOINT MRKE AN
+++oENTRY IMTO EREARKPOINT TRELE>» IF ENOUGH
*+oeFPHCE EXIETE
» THE RCTURL ERKPTS ARE PUT IN MEMORY
» OM THE ‘&7 COMMAND

»
ZETER BER GETHE GET TAE ARDDR AND “YFLAG
BER T207 NO EBKPTE», GO INZERT ONE
CMP B #%5 ENOUGH ROOMT
B:E CLRDE MO CLEAR DISPLAY AND RTE
++se0oET TO FIRET FREE =PACE IN TRELEesesss
TRIG B:R RAODEK ADD 2 TO x AND DECE
ENE TRIG BEANCH IF HNOT DOMNE

Al1-3

FRGE 004 JABLIG

aoleg ++499+INZERT NEW BKPT IN TABLEeeesss

03182 EOFE PC ROL1D TZ2OT7 INEC YWFLAR INCR FLRG

nd1ed4 EO7S Be AROLE LI A BPRDR INZERT IN THELE

n1esS EOFC AV 00 ETA A 0¥

on1és EOFE Be AOLF LI A EPARDR+1

omley E021 AT 01 ETA R 1%

oiez E022 39 RTZ=

on1ie2 »

oo1vyn ++¢¢ZIIBROUTINE TO DISABLE NMI INTERRUPTSeeese
o017l »

gn1ve E0S4 38 3C DIZHMI LDR R #%3C

no17s EZS BY 2021 ETA A DIZCTR INTE MAZKED CR1 RCTIVE LOW
noi1v4 EO0SS BY 3023 ZTA A ZCNCTR INTR MAZKED CR1 ACTIVE LOW
do1v7s E0RC 29 ETE

an1ve *

o017y *

anivya +++eRESTART ROUTINEeeee

onive *

ono1sn »

nn1=1 E02D 3E AOYE REXTAR LDE #ERR07 S

on12g EOs0 BF AOOE =ET= =P INITALIZE =TACK POINTER
noisz EON2 CE E14E LIvx #KEYDC G0 DECODE KEYBOARRD

no124 EQ3s FF RDOE ETH NIO INITALIZE MMI INTERRUPT
an1as +INITALIZE KEYBORED-DISPLAY PIA

0136 EO099 28 FF LDA A #%FF

o127 ENR BT S022 ZTRA R E=CHREDR PRO-PBY OUTPUTE

no1as EO9E 44 LR R

on1es EOSF RV 2020 =STR R DIZRER PRO-PAA OUTPUTS«PART7 INPUT
nola0 EORZ 2D EO EER DIENMI DIZABLE KEYEROARD-TRACE
nni=st ++INITRLIZE RACIAee

00132 EOR4 26 03 LI R 3

a192 EORE BY 2002 =TH AR HCIRE REZET THE RCIRA

00134 EOR® YF ROLD CLE YFLAG INITRLIZE “FLRAG

oneas EORC 2D 04 IMIT EiR CLFLiB CLEAR DIEPLAY AND FLAGS
0135 EORE 20 27 BER HIE MRITE PROMPT “-"

00137 EQEOD 20 4C ERR puTDE

oniss *

oo1s9 ++++ZLIEROUTINE TO CLERR DISPLAY BUFFER AND FLAGSeeese
oozon »

o001l EOB2 CE RO14 CLFLG LDR #DIcIN4

anz o2 EORS 4F CLE R CLERRS DIGING AND DISINS
npn2nz EOBE AV 0O CLFLGI TR R a2 X CLERRE MFLAGS AND RFLAG
nozog4 EOES 02 IMZ CLEARE NFLAZ AND TEMPZ
oo2o0s EOB2 2C ROIR CPX #DISIN4+6 END?

onzZ0s EQBC 26 F2 ENE CLFLG1 NO LOOF BRACEK

o207 EOBE CE RAOOC LI #DIZBUF

onzZos EOCT FF AOLA N XKEYBF INITRLIZE <KEYEF

ongzos EOCY 26 FF CLRDE LIR A #%7F

anz10 EOQCE BY S0z20 TR A DIZREGR BLANK DISPLAY

on0zZ11l EOCS 28 11 LI R %17

onziz2 ENCE CE ROOC LD #DIZEBLUF

onz1z EQCE AV Q0 CLERDIE1 ZTA AR O X CLEARR OUT DIZPLAY BUFFER
noz2i4 EoDn 0= IM=

no21s EODY 2C RO14 CPH #DIZEBLIF+S ENDT

Al-4

PRGE

00216
no217
noz18
noz19
no220
nnzai
nozee
nonz23
nozz4
o225
noz2e
no227v
nozze
noz29
nozz20
noa231
o232
no2323
nozz4
nnz3s
noz3n
no23v
noz32
nnaz29
nnz240
0241
nnz4z
0nz43
o0244
noz24s
noz46
noz47
noz4:2
nnz49
noasn
00251
onzs2
nnzsa
nu2s4
no2ss
no256
noz2sy
0n2ss
anzss
onzed
anzet
gn2ez
nozez
nozed
no0z2Es
00266
0oze?
Q263
npozes

005

EOD4
EODS

EODY
EODS
EODC

EODD

EOEOD

EOEL
EOQEZ

EOE4
EOQET
EOED
EOER
EOER
EDEC
ECQED
EOEF
EOF1
EOF2
EOF4
EOFS
EOF&
EOQOF7
EOQF2
EOFB
EOFD

EOQFE
E101
E103
E104
E105
E102
E10E
E100C
E1 0D
E1dF

JBUG

26
39

(=1
B?Y
39

CE
ne
=
39

CE
A&
42
43
42
48
AR
Ry
R&
43
42
48
43
RA
A7
EE
39

CE
A6
4
03
FF
CE
g
4A
26

7F

FB

10
ROOC

0&00

FD

RODC
oo

01
12

02

AOOC
an

RO20
E3CS

2022

BNE CLRDE1L
RTS
*
+SUBROUTINE 7O WRITE PROMPT ON DISPLRY
*
HDR LDAR R =16
TR R DISBUF ouTPUT -
RTS
.
+ZUBROUTINE TO DELAY 20 ME OR X ME
» WHEN ENTERING AT DLY1 THE XREG MUST CONTRIN
. THE DESIRED DELAY CT <APX 13USEC-COUNTY
*
nLy20o LDX #%0600

DLY1 DEX
BNE DLY1
RTE

*»

+++¢ZIJEROUTINE TO BUILD TWO BYTE RDDRESS FROM
+sseeoF IRST LOCATIONE OF DISBUF
* ADDRESS IS IN X-REG AND “"BPRADR- ON EXIT

L 4
ELDx LD #DISBUF
LDAR A DX GET FIRET BYTE
REL R
RZL R
REL R
AL R MOYE TO HIGH MNIBBLE
ORA A 1% Or WITH LOW NIBBLE
ZTA A BPARIDR-DISBUFsX EZTORE IN BPRADR
LDA A 25X GET TECOMD BYTE
AZL A
H=ZL R
AL A
RZL R MOVE TO HIGH NIBBLE
ORR A 3% OrR WITH LOW NIBBLE
ZTA A BPRDR+1-DIZBUF:> ZTORE IN BPRIR+1
LD¥ BPADR-DISBUF+x ADDRESS TO XREG
RTE
*
>
++¢oROUTINE TO DISPLAY & DIGITS IN DISBUF
»
L 4
guTDE LDX #DISBUF GET ESTARTING ADDRESS
OUTDSE1 LDRAR A 08X GET FIRSET DIGIT
INC H
IN%
I #DESBUF ZAVE POINTER
LD #DIGTBL-1
DUTDEZ INMX

IEC R POINT TO PRATTERN
ENE ouUTDER
CLE SCNREG BLANK. DIEPLRAY

Al-5

PAGE 006 JBUG

n0270 E112 RE6 0O LDR R DX GET PRTTERM

00271 El1i4 B7 8020 TR R DISREG SET UP SEGMENTS
no272 E117 B6 RO1LC LDR R SCNCHNT

00273 E11R B7Y 8022 3TR R SCHNREG SELECT DIGIT

00274 E11D CE 004D LDX +3$4D SETUP FOR 1MS DELRY
D0275 E120 8D BE BER DLY1 DELRY 1 MS

Do27e E122 FE R0O20 LDX XDEBUF RECOYER POINTER
o277 E125 8C RO12 CPX #DISBUF+6

no2v3 E128 27 1F BER OUTDE3

nn2ve E12R 74 ANIC LER SCNCNT NOsMOVE TO NEXT DIGIT
00280 E12D 20 D2 BRA ouTD=El

nn221 *

no23e ++++SUBROUTINE TO SCAN KEYBORRDeeee

00283 .

00234 E12F 86 FF KEYCL LDR R #$FF

00285 E131 CE 8020 LD #DISREG

00e8s E134 RY 0D ETRA A DX BLANK DISPLRAY

D028y E136 86 3F LDR R #33F

00288 E138 RY 02 ETR A 2% ALL ROWE LOW

00289 E123R RAs 02 KEYCL1 LDR R 32X

00290 E13C 6D 00 TET s

no291 E13E 2R 08 BPL KEYCL2 KEY DOWNT

00292 E140 8B 40 ADD A #6564

00293 El142 A7 D2 ETR R 2% TELECT NEXT COLUMN
00294 El144 24 CO AND R #3$CO0

no235 E146 26 F2 BENE KEYCLA LAET COLUMN =CANNED?
00296 E148 39 KEYCL2 RTE NO KEY FOUND

ooE237 E149 36 20 OguTDsE3 LDA A #%20

no292 E14B BY RAOIC ETA R ECNCNT INITRLIZE SCNCNT
noz99 *

00300 *eooROUTINE TO SCAN AND DECODE KEYRORRDeeee
003201 4

00302 E14E 3D DF KEYDC RER KEYCL

o203 E1S50 27 RC BER OuUTD=E NO KEY CLOSED

00304 E152 8D 233 BER DLY20

00305 E154 CE 3020 . LD #DIZREG RESTORE X

00306 E157 26 01 LA A #5011 ZETUP ZCAN FOR FIRET ROW
00307 E159 AY 02 ETR A 2»X%

00302 E1SB 2D DD KEYDC1 BER KEYCL1 ZCAN KEYBORRDs GET KEY
o302 E1SD 26 0R BNE KEYDC2 KEY FOUND

on310 EISF RE 02 LDR R 2s% CLERRS NMI INTERRUPT
00311 E161 31 20 CMP R #%20

on312 E1s3 27 99 BER OuTDE LAET rOW

N0313 E165 68 02 REL 2 ¥ SHIFT LEFT

on314 E167 20 F2 BRA KEYDC1

00315 E169 SF KEYDC2 CLR B INITRLIZE COUNTER
00316 E16AR CE E3DC LDx +KEYTBL

00317 E16D AL 00 KEYDC3 EMP R Ds % ZERRCH TABLE

00318 E16F 27 09 EBER KEYDC4

00319 E171 8C E3F4 CP* #KEYTBL+24 EMD OF TARRBLE?
00320 E1V4 27 61 EEQ KEYDOF NO KEY FOUND IN TARBLE
00221 E176 02 INX

00322 E177 SC IMNC B RIDVRMNCE

00323 ELI78 20 F3 BRA KEYDC3

Al-6

noz224
00325
00326
0n327?
nnz22s
na329
no330
0331
no3z2
00333
0334
no325
an33s
00337
00333
Qonz39
00240
00341
nnza4g
0342
D244
0Nz45
D345
00347
00243
D349
on2sn
00351
nNas2
00353
no354
nozss
0nz56
no3s7

D360
S|
0362

0o3s4

ooy

E17R
E17C
E17E
E181
E183
E135
E182
E18R
E13D
E18F
E192
E193
E196
E198
E19B
E1SD
E1RD
E1R3
E1RA
E1R7
E1RR

E1RLC
E1RF
E1R0D
E1B1
El1B2
E1B4
E1Be
E1ER

E1EBR

E1RC
E1RE
E1CO

E1C2

E1C4

E1C&
E1C2
E1CC

E1CE
E1D1
E1D4

ABUG

8D
26
BD
c1
cE
FE
E7
8C
26

08
FF
20
8C
26
70
ED
FE
09
FF

20

BD
ED
20

ED
ED
ED

B3
FC
EODD
oF
27
AO1A
non
ROOF
03
AD14

ADIA
3F

AO13
FS

RO1S
E27E
RO1A

RO1FA
ch

E196

FER
on
nE
14
1E
{=4=]

37

41
42
48

EQC4
E395
EODT

KEYDC4

KEYDCHE

KEYDCY

»

+ HERE
L ad

*
KEYDLCS
kEYDCS

JMPTHE

»

BER
ENE
JER
CMP
BGT
LDx
TR
CP¥
BNE
INC
IMX
ETH
BRR
CPX
ENE
INC
JER
LDX
DEX
ETH
BRA

KEYCL
KEYDC4
DLY20
#30F
KEYDCS
“KEYRBF
De X
#DIZBLIF+3
KEYDCTY
DIGING

“KEYBF
KEYDOF
#DIZBUF+7
KEYDCH
DISINS
MDI=1
“KEYBF

HKEYRF
KEYDOF

WHRIT FOR KEY RELERSE

DELRY 20 MSEC

POINTER IN DIZRLIF
ZTORE KEY YRLUE
4 DIGITE IN?
NO
YE=

2 DIGITE IMNY

ZET FLAG
DIZPLAY NEW DARTA

BACK LUP POIMTER
EAVE

TO DIEPRTCH TO AR KEYBOARRD OPTION

LI
MM
IMNM
DEC
ENE
AMP
BRA
BRR
ERA
ERRA
ERH
ERA
ERR
ERR

#IMPTRE-3

KENDCS
R
KEYDLCS
KEYDCD
KEYDCH
KEYDCE
KEYDCC
KEYDCD
KEYDCE
KEYDCF

+ HERE ON P KEY
» FIUNCH MEMORY TO RUDIO CRESETTE

»
KEYDCE

*

JER
JER
ERRA

CLRDE
PNCH
KEYTDICH

+ HERE OM L KEY

* LORD

.

KEYDCS =R
JER

KEYDCH JER

CLRD=
LORD
HIR

2

ET TO RDDRESE IN JUMP TRELE

THI= OME?
l.'.'E -S'

KEY

KEY

KEY

KEY

KEY

KEY

KEY

KEY

TAAMIS2ZEM

CLEAR DIZPLAY
FUNCH DATR TO CREEETTE

MEMORY FROM RUDIO CREZETTE

CLERR DIZPLAY
LORD DATR FROM CARSZETTE
LWEITE HERDER

+ RETURN TO DIZPLAY HERDER

Al-7

PRGE 008 JBUG

00373 E1D? 7E EOFE KEYDOF JMP ouTDs DISPLRY HERDER
ao3v9 >

00380 + HERE ON N KEY
003381 + TRACE OME INSTRUCTION
nn232 »

00333 E1DR 7PF ARO1D KEYDCA CLR YFLRG
00334 E1DD 7C RO18 TRACE INC NFLAG

00385 E1E0 26 34 LDR AR 334 SET UP HARDWARE TO TRACE
00336 E1E2 BV 2021 ETR A DISCTR CR2 LOW START TRACE
00327 E1ES 3B RTI

on3zs *>

oN223 + HERE ON V KEY

an320 4 IF RDDRESS HAS 4 DIGITS INSERT R BRKPT
no3a21 4 AT RDDRESE OTHERMWISE CLERR RALL 5 BRKPTS
0032 »

00323 E1E6 VD RAO14 KEYDCB TST DIGING 4 DIGITS IN7

00394 E1EQ 26 05 BNE *+7 YESs INZERT BP

00295 E1ER 7F AO01D CLR VFLAR

00396 E1EE 20 E7 EFR KEYDOF 60 DISPLAY

n0397Y E1F0D 3D 74 BER KEYD3F YEZs INSERT BRERKPOINT
00393 E1F2 BD EO0RRA JER =ETBR

00339 E1FS 20 EO BRA KEYDOF

on40n *

no4n01 + HERE ON M KEY

00402 » DIZPLARY MEMORY COMTENTS

00402 +

00404 E1IF7 7C RO16 KEYDCC INC MFLRAG SET FLAG

o405 E1FR 7D AO14 T=T DIGING 4 DIGITE INY

n040e ELIFD 27 D2 BER KEYDOF MO

00407 E1FF 28D &8 B:R MDIZ YEZs DIZPLAY MEMORY
00403 E201 20 D4 BRA KEYDOF

00409 *

004149 + HERE ON E EKEY

no411 - ESCAPE C<RBORT> UZER PGM

nod12 *

00413 E203 VE EORC KEYDCD JMP INIT CLERR DIISPLAY AND FLAGE
not14 *

00415 ¢+ HERE [ON R KEY

no41e » DIZPLAY UZER REGISTERS

00417 »

nN418 E206 FC RO17 KEYDCE INC RFLAE REGIZTER DISPLAY
nn41% E20? BD E2CE JER REGET

no420 + MUTURL RETURM TO DISPLAY

no4z21 E20C 20 C9 KEYDCG BRA KEYDOF

nog4ze >

ong423 + HERE OM & KEY

andz4 - IF IN “M7 DIZPLAY MNEXT MEMORY LOCATION
00425 * IF IN "R° DIZPLRY NEXT REGISTER

00426 * IF 4 DIGIT ADDRESE WA%: PUNCHED o0 TO
nn4z2y » ADDREEE IN USER PROGRAM

nn4z2 » IF 4 DIGITE WEREN-T INPUT RETURN TO UZERS
00429 4 PEM AT CURRENT UZER PC (FPROCEEDD
a04:20 *

N0431 E20E 7D RO1& KEYDCF TET MFLRAG MEMORY MODE~?

Al-8

nn432
0on433
00434
n0N435
004326
00437
nn433
00439
no440
o441
ond442
004432
00444
0445
nng446
00447
010448
00449
00450
nN451
00452
00453
nn454
no455
00456
00457
no453
00459
no4e0
00461
T E 1
00463
nN464
00465
00466
00457
no463
00459
00470
no471
o047z
004?73
00474
o047s
00476
oo47?7?
00473
00479
oo420
00431
nnga2
10423
00434
00425

no9

E211
E213
E216

E218
E21B

E21D
E220
E222

E224
E226
E227
E229
E22C
E22E
E231
E234

E236
E239
E23B
E23D
E23E
E240
Ec4e
E245
E246
Ecda
Ec4B

E24D
E24F
E252
E255
E257
E25A

E25B
E25D
E2SF

E261
E2kR4
E2k5

E2B9
E2el
E25D

JBUG

2h
7D
26

7D
F={

BD
27
20

8D
30
R?
F6
E?
BD
BD
27

FF
EE
A6
26
86
A7
FE
32
A7
BD
26

26
B7
F6
36
BY
2B

2D
2D
20

BD
=31

TE

FE
ne
ng

43
RG17
49

RD14
1

E063
2B
B2

40

113
RO1E
05
EOC4
ENE3
17

AOLE
00
11

3F
0o
ARO1E

ne
EOSE
ES

20
2022
B022
3D
2023

47

12

HE
E2D7

A&
EOE4

RO1A

BNE
TET
BENE

KEYD1F
RFLRG
KEYD2F

YES

+ IS IT R "0 OR “PROCEED’?

TST
BNE

DIGIN4
KEYDCJ

+ HERE ON PROCEED

JER
BEQ
ERRA
+ HERE ON B0
KEYDC.J BSER
TEX
ETR R
LDR B
TR B
JAER
JER
BEQ

GETXB
TRC
TRACE
MODE
KEYD3F

By X
BPADR
DX
CLRDE
GETXB
TGC

4 DIGITE IN7
NO> PROCEED MODE

GET RDDR RND YFLAG
BRANCH IF NO BREAKPOINTS
0 TRACE

GET RDDR

MODIFY LOW BYTE
GET LOW BYTE
MODIFY HIGH BYTE
CLERR DISPLRAY

GET TAB ADDRAVFLAG
BRANCH IF NO BP

*+++INSTRLL ALL BRERKPOINTSeeee

TGB ETx
LD
LDR
P=H
LDR
=TH
LD
PUL
=TR
JER
BNE
+ PREPARE TO
TRC LDA
=TH
LA
LDA
=TH
RTI

I i (e (i o

I

IPIOIDD

BPRDR
Os
Qs

#33F
e ¥
BEPRDR

o X
RDD32X
TER
RETURN TO
«$20
ZCNREG
SCNREG
#8230
SCNCTR

+ HERE TO DISPLRY NEXT

KEYD1F BE:R MINC
BER MDISO0
BRA KEYDCG
+ HERE ON DISPLRY NEXT
KEYD2F JER REGET1
BRA KEYDCG
KEYD3F MP BLDX
.
.

IAVE IN TEMP
SET RDDR OF BP
GET OP-CODE
ZRYE

INZTRALL R =WI

ET BACK CURR TAB LOC
GET BACK OP-CODE

ZRAYE IT IN A TRELE
GET NEXT TRR LOC

MORE TO DO7

UEER

SETUP FOR KB INTR
DUMMY RERD TO CLERR INTR

ENRELE KB INTR
BRCEKE TO UZER

MEM LOC

MEMORY INCREMENT
MEMORY DISPLAY

REGISTER
REGISTER DIEPLRAY

++SEROUTIME TO DIEPLRAY MEMORY AND CHANGE ITee

>

>

MDIE LD*
IN®
IN=

“KEYBF

00436
00437
IR 22ES
o049
no430
00431
HITE A= F
00433
00434
00495
00436

00497

ong9s
o043
nosan
onsol
onsn2
ons03
ons04
00sS05
00506
onsoy
00s0s
a05039
00510
ans1t
nos512
nos13
onS14
nos1s
0nS16
ons1y
nogs1s
00519
0520
nos521
onse2e
nonsz23
nnsg4
00n525
00526
ons27?
00528
00529
on330
00531
an332
00533
00534
00535
00536
00537
00538
00539

nin

E2sE
Ec71
E273
E27S
E277
E27R
E2?D

E27E
E2281
E282
E283
Ez284
E235
E288
E28AR
E28C
EcBE
E290
E293
E29s
E299

E29R
E29R
E29D
E29F
E2RO
E2R1
E2f2
E2R3

E2R4
E2R6
EZ2R7
E2AR
E2RD
E2RF
E2B2
E2B4
E2B6
E2B9
E2BB
E2BD
E2BF
E2C2
E2CS

JBLG

FF
8D
Ak
8D
E7
F7
39

Fé
58
58
S8
58
FA
&D
E7
RE
2D
B7
F?
7F
39

16
C4
84
44
44
44
44
39

8D
08
FF
B6
8D
CE
A7
E7
B6
8D
A7
E?
7C
7C
39

AO1RA
F3
oo
23
RO10
AO11

RO12

AG13
DC
na
oo
oR
RO10
AO11
AO15

oF
Fo

RO0A
RODOA
EB
RO0C
oo
01
ROOB
DF
o2
03
RO14
RO16

MDIZO

+

T
BER
LDR
B:R
=TH
TR
RTE

I

D

#KEYRF
KEYD3F

O %
MDIS2
DISBRUF+4
DIZRBUF+S

LUPDATE POINTER

SET ADDR OF MEM LOCATION
cET MEMORY DATRA

FORMAT DATA

STORE DATR IN DISBUF

+ SUB TO PUT NEW DRATR IN MEMORY RAND DISPLAY IT

X+

DIE1

>

LDA
REL
REL
A=l
REL
OrR
BER
TR
LDA

=R
TR
TR
CLR
RTE

o)

- i I bt

DBISBLUF+6&

DISRUF+7
KEYD3F
Oa

s
MDIS2
DIZBLUF+4
DISBUF+5
DIGINS

GET MEW DRTA

DATA TO HIGH NIBEBLE

OrR WITH LOW NIBBLE

BET MEMORY RADDR RoRIN
ZTORE NEW DATA

RCTUAL DATA IN MEMORY
FORMAT

RCTURL DATA TO DISPLAY

ZETUP FOR NEW DRTR ENTRY

++SUBROUTINE TO MOVE LOW NIBBLE OF A TO B AND TO
+»+eoMOVYE HIGH NIBBLE OF R TO LOW NIBBLE OF R

L
MDIZ2

.
>
S
MINC

TRE
AND
AND
LSR
LER
LER
LSR
RTS

BSR
INX
ETX
LDA
BSR
LDx
TR
TR
LDA
BSR
TR
=TR
INC
INC
RTS

ITDP7DDITIIDIMW

SUBROUTINE

WD DD

#B0OF
#+3F 0

MAZK LOW NIBBLE
MRSK HIGH NIBBLE

HIGH NIBBLE TO LOW NIBBLE

TO INC MEMORY DISPLRY AND CHET

KEYD3F

TEMP1
TEMP1
MDIS2
#DISBUF
Os X

1sX
TEMP1+1
MDIs&2
2 ¥

3 X
DIGINS
MFLARG

Al-10

GET MEMORY RDDRESS

SETUP FOR NEXT MEMORY LOC
SRYE

GET HIGH BYTE

FORMAT FOR DISBUF

PUT IN DISPLRY BUFFER
GET LOW BYTE
FORMART

FOUR DIGITS ENTERED
SETUP FOR MEMORY EXAMINE

00540 »

00541 »>

NS4z ++ZIBROUTINE TO DISPLAY REGIETERE OM USERSE ETARCK
nnS4:3 »

nos44 + ORDER OF DIZPLAY 132 PCsxXsRsBsCCH =

00545 » TEMP2 E=TRRTE RT -2 AND RDVANCES TO +323 AND
00546 * CORRESPONDE TO THE ORDER OF DISPLAY
00547 *

00543 E2C6 86 FE REGET LDA R #3FE INITRLIZE COUMTER
00549 E2CB BY RO19 =TA A TEMPZ

oSS0 E2CB FE ROOR LD =P GET UZER-E =P

nnsS1 E2CE 86 06 LDR R =36

nonssSz2 E2D0 08 REGETO INX FOINT TO TOP OF ZTAHCK
n0S53 E2Dl 4R DEC R

noSS4 E2DZ2 26 FC ENE REGETO

nnsss E2D4 FF AROOA ETX TEMP1 TEMP x LOCARTION

00556 E2DY BD EOC4 REGETI JER CLRDE CLERR DIEPLRY

ans57 E2DR FE ROOA LD TEMP1 REETORE X

0033538 E2DD B RO19 LDA R TEMP2

00559 E2E0 2B OE BMI RERETR2 PC AMND ¥ REGE

0560 E2E2 21 03 CMP R #$3 IZ IT EP¥

00551 E2E4 27 21 RBEDR REGET?2 YEE

noSe2 E2E6 81 04 CMP A =%4 ALL REGE OUT =TRART OVER
00563 E2ER 27 DC BER REGET

n0564 EZER Re 00 LR A DX QUTPUT RsBsLCC

00565 E2EC 8D 2E BER REGETS DIZPLARY OME BYTE
noSee E2EE 20 21 BRA REGETS UPDRTE COUNTER

0NSey E2F0 26 REGETZ2 PEH H ZRAYE R

no5e2 E2F1 Re 00 LR R DX SET HIGH BYTE

nos56e2 E2F3 8D 27 BEZR REBGETS DISPLRAY

n0sv0 E2FS FE ROORA LI TEMP1

no03v1 E2F8 Ae 01 LDA A 1s2 GET LOW BYTE

00572 E2FR 3D 2B BER REGETe DISPLRAY

00573 E2FC 32 PUL A REZTORE R

ons74 E2FD 4C IMC A A REG? (R=0>

00575 E2FE 27 11 BER REGET4 YES

00576 E300 23D 12 BER REGETR DEC POINTER

nos37? E302 BD E271 JER MDISO

nnsy8 E305 20 OA BRR REGET4 UPDRTE COUNTER

N0579 E307 Bé ROD8 REGST3 LDAR A =P =P TO DISPLAY

00320 E30R 8D 10 BER REGETS DISPLAY

NN531 E30C Bé ROODSD LR R ZEP+1

00582 E30F 8D 16 BSR REGETE

0583 E311 7C AO19 REGST4 INC TEMP2 UPDRTE COUNTER

00534 E314 FE ROOR REGSTS LDX TEMP1 INCREMENT X

00535 E317 09 DEX

00536 E318 FF ROOR ETX TEMP1 SAVE X

005237 E31B 39 RTS

noses *

0nss89 ++SUBROUTINE TO MOYE TwWO DIGITS IN AR TO FIRST TWO
00530 +oo+o OCATIONS IN THE DISPLAY BUFFER <(DISBUF
00531 >

n0S92 E31C BD E29R REGSTS JER MDIsS2 FORMRAT

00593 E31F CE ROOC LDX #DISBUF

Al-11

FARGRE

oS24
oS35
0NS9s
oS3y
oS3
ans29
0000
ooeny
Dosnz
OoOenz
e ng
Qoe0ns

Qs 03
nnein
noell
gnele
(NNI=D BE;
noelg
onel1s
aos1e
nosly
agels
sl

a0s410
INE S

T
o
Jau

b
S
N

Goeds
0047

MMmMMMmMMMmMMmMMmmMmmmmmm

nigz

mmm
DI T]
Ny ran

b MO

LJ D D
e Ny N

o= I (R |

=
2
=
2

LS W B (I e s Y Y W VUi g |
O L0 O MMEM T T DO O [o BN

PO R O O R I YN RN IR I RN I

{aa)

£ L
m =

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E:

L0V 00 D0 0 D0 G0 Dl Gl G0l G
[l I
-

m
LXN

00 0 00 D G DO D 0 GO D0 D Dl 0 D) Dl) 00 D
(RS s R I I B DN B R

[}

[» S
WOMm WM DA o ol T M

R EREES

JAELHS

R7 00
EY

239

ED
CE

=41]

EZ2%R
AOOE

RODS
HOOz
004
ADD2
02
FF
4z

R T JRD T mo=dh

2D
0
D 25
4
Y AD1I9
CE ROz
20 2C
2D 2R
FE ROOQz
20 25

TR ADLS
Fo
AODZ
nn1s
20 1E
FE ADNZ

- ROOY

o 1

S8 47
=

=y

F& 2002
5y

++ZUBROUTINE TO MOYE TWO DISITE IN A TO
*+o¢ OCATIONE IN THE DIEPLAY EBUFFER (DISBUF>

»
REGETH

*
*

+++«ZJEROUTINE TO PUNCH DRTA TO CASSETTE TAFEeees
+ RUTIO CASSETTE WITH KC

*
PMCH

FPLND1 0

PLUNDIZS

PLUMNDZEO

*

+++ZLBROUTINE

+
OuTCH
OuTCl

STR
=TR
RTS

JdER
LI«
ERFR

LDA
ZTA
LD
BIR
LDA
=UE
LDA
=B
EER
LDA
LDA
BER
PEH
TS¥
BER
PUL
INC
=TA
LDx
ESR
ESR
LD
BSR
TEC
ENE
STH
LD
ESR
LD
DE¥
P
ENE
LDA

R
E

R
A

I IDdm™

I

T I

A

e ¥
1e%

MDIE2
#DIZBUF+2
REGETY

#X0101000
ACIAS
*E032FF
FMLDF
ENDR+1
EEGHR+1
ENDR

BEGR
FIUMDES
#3FF

an
r

OUTCH

PLIM

TEMFPZ
#BEGH
PUN
FPLIM
EEGHR
PLIM
TEMPZ
PUMDZ0
REGH
#0019
FNLIDE
EERR

ENDIA
FLNTIT D

w705

TO PLIMCH

ACIAE

Al-12

FIRST DIGIT<OR THIRD>

ZECOND DISIT

FORMAT

THIRD 2 FOURTH DIGITE

ETANDARRD

1 2 BIT CHR PRR 2

DIVIDE BY 15 WITH RTE

FUNCH LERDER
FORM ENMD TEMP RER

DIFF LEEE THARN S
3

YEZs EET BLOCK=:
FLUNCH B

25
25

GET BYTE COUMT
ROJUET IT

FLUMIH ARDDR

FLUNCH DRTR

DONE
MO
STRVE

YETY
#»R YRLUE
FUNCH 25 OMEX
REZTORE =R

MO

FPUMHCH 15

IRTA BYTEeees

SAYE B

IZ DATR RERDY YET*Y

SECOMD TwO L

NOT HIB

00&43
0oe49
o0es0
onest

noes2

00553
00e5S4
O0ES5
n0ESE
OO0ESY
a0ase
nnes9
Y]

ODEET
ﬂﬂﬁﬁj
JDt’D
e |
nneve
=]
nnﬁ?4
00e

0
0
0
noe

g =] =

|T- U‘ |T x:f'- |

e,
E-. |‘|’
G 20 00 00) -

U LU EIID‘JITH

)
1]
Ty T

T
00 0
I <N

R

oo on
oo0vonl

013

E37F
E3&0
E232
E32%5
E386

E3237
E3R9
E38B

EZ23C 3

wwwwm
o o D 0 0
e =]

Ez25
E397
E29R
E39C
EZ2E
EZR0
EZ2R2
E3R4
E2RS

EZR7
E3R2
E2R9

. EZREB

E2RE
E2ERO
E3ER3
E2RE
E3R&
E2EHA
EZEER
EZBC
E2EE

JBUG

57
24
BY
33
39

26

2D
ne

cE
39

26

B7 &
8D 2

21
cv
21
26
39
20
16
S0
30
EB7
2D
FE
=)
"7
B
SA
26
20

3009

no
EF

FF
ES

002

FA

HER

BCC

=TH

PUL

RT=
*

)2

auTCil »MIT NOT RERDY YET
A RCIARD OUTPUT ONE CHAR
B RESTORE R

¢ ZUE TO PUNCH ONE BYTE PTED TO BY XRER.
+ ALEOD INCREMENTS XREG BEFORE RETURN

R X GET DHRTH
OuTCH PUNCH IT
UPDRTE RIDDR

+++PLINCH LERDER®es

R #%FF OUTPUT ALL ONEE
OuUTCH ouTPUT
DECREMENT COUNTER
PHLIR IF NOT DONE THEN LOOP

seeee+ S BROUTINE TO LORD DATA FROM CASSETTE TRAPEeeee

»

PLIN LDA
BER
IN®
RTE

»

»

FPNLDR LDH
BER
DE
EMHE
RTE

*

+

*»

*

LAORD LDA
=TH

EILD BER
CMP
BE®
CMP
EME
ETE

FEDELCK EB:R
TRE
INC
BEIR
=TH
BER
=TH
LD

ETBLCK BER
=TH
IN®
DEC
ENE
ERR

»

+eo0eIMNPLT

.

INCHR LDH
AR
ECC

R s#xo0diooong DIVIDE BY ONE

A ARCIARE
INCHE
R "B ZTHRT OF BINRRYTY
ROBLCK YEE
A #1 END OF FILET
BILD
YE=
INCHE SET BYTE COUNT
FUT IN B
E HOJUET IT
INCHR SET ETART RDIDR HI
R EEGH
INCHE SET ZTRRT HRDDR LO
A EBEGAH+1
BEGH RIDE TO =% RER
IMNCHR NMOT DOME
R X ZTRE IT
INC RIDDR
E DEC BYTE COUNT
ZTRBLCEK NOT DOMNE
EILD

ONE CHR TO A REGessess

HOIAS

i (e o

INCHR DATR RERDYY

Al-13

PRGE 014 JBUG

00702 E3Cé B6 8009 LDR A RCIAD INPUT CHRR
00703 E3C9 29 RTS
00704 >
N7 05 +o+ooSEVEN SEGMENT PATTERNS — USED BY OUTDSeess
00706 > 0 1 c 2 4 b) s
00707 E3CR 490 DIGTBL FCB $40:579,8524+830:,513,512+,302,878
E3CB 79
E3CC 24
E3CD 30
E3CE 19
E3CF 12
E3D0 o2
E3D1 78
0o7v 08 * 3 3 A B C D E F
00?09 E3D2 00 FCR F00$13+302,8303+346+521806:30E
E2D3 138
E3D4 08
E3D5 03
E2D6 46
E3D7 21
E3D2 0e
E3D2 0E
ooé10 » = BLANK
oY1t E3DRA BF FCB 3BF+ 37F
E2DB 7F
++ookEY YALUE LOOKUP TARBLE - USED BY KEYDC
» 0 1 c 2 4 5 1) v
E2DC 01 KEYTBL FCE SDI,$029$42y$82p5049$44y$84§$08
E2DD D2
E3DE 42
E3DF 32
EZED 04
E3E1 44
E3EZ 24
E3E3 08
nnvis . 3 3 A B C I E F
00716 E3E4 42 FCER F42,388,3C8+:3C4.3C2,3C1 5831841
E2ES 88
E3E6 C2
E3E? C4d
E3ER C2
E3E9 Ci
E3ZER 231
E3ER 41
no7F1v7 » P L N Y M E R =
00713 E2EC 10 FCB F10+350-320,8D0:F20+360-FR0-3E0Q
E2ED 50
EZEE =20
E3EF D0
E3F0 20
EZF1 &0
E3F2 RO
E3F3 EO
aov19 »

Loes it Y o |
foes i me i e}

Y Y Rt |

s b
$H wno

Al-14

PRAGE 015

nov20
nova1
oora2
00723
nosz24
no7ves
nov26
nover
aor/as
nn7a29
0ov3n
00721 E3FS8
0732 E3F8
nov323 E3FR
00734 E3FC
00735 E3FE

JBUG

8020
2021
3022
2023
2008
2009

EO14
E032:
E019
EO2D

sos0ookKEYBORRD-DIEPLRY REGISTER RASSIGNMENT

L 4

DIZREG EQU
DIECTR EQU
SCNREG EQU

SCNCTR ERU
ACIAS EQU
ACIARD EQU
»
*+o+ INTERRUPT
»*
OrG
FDR
FDE
FDB
FDB

$3020 DIZPLAY SEGMENTS REGISTER
33021 DIZPLAY ZEGMENTS CONTROL
$30ee KEYBORRD-DISPLRY SCRAN REG
$2023 KEYBORRD-DISPLAY SCAN CTR
$2008 ACIA CTRL OR ETARTUS REG
2009 ACIA XMIT OR RCY REGS
VECTORS eeee

FEIFB

I0 IRR INTERRUPT VECTOR

SWIR SOFTWARARE INTERRUPT VYECTOR
HONMZEK NMI INTERRUPT YECTOR
RESTAHR RESTRRT INTERRUPT VECTOR

Al-15

PRiEE

I ec Ty
0a738
nov3s
no7v40
00741
nov4e
an0v4:3
nnv4d
0nv4s
00746
nova7
I Y5
nov49
anyso
novsl
noyaz
noysSa
00v54
0a75s
11l
n0vs?
nnyss
0ovsS9
00ve0
0ovel
onvyes
00ve3
00764
0aOves
00ves
076y
NO0v6eR
NOvVe9
povvo
0n7?71
anyye
111 Farac
onyv4
aovys
1 rarg
111 rarard

016

ROOOD

ROOD
AnO2
RO0D4
An0G
AOOA
ROOR
AROOC
ARO14
RO1S
AO16
A017
RO13
AO19
AO1A
ANIC
RO1D
ARO1E
RD20

RO22

JBLIS

0002
0002
nonz
ooz
000z
0noz
noos
0001
0001
0001
0001
0001
o000l
0002
nonot
noonl
nonz
onoz

DO0OF

»

+*oeeooVARIARBLE PRRAMETERSeeeeee

* EYSTEM RAM
*
»
+ CAUTION:
*
*
+ CORRECT OPERATION
.

ORG FR000
+ THE U=ER CHNM
+ ROUTINE HERE.
oV RME 2
BEGA RME c
ENDA EME =
NID RMB =
=P RME 2
TEMP! RMB (=
DISBUF RME a2
DIGIN4 RMB 1
DIGINE RME 1
MFLARz RMB 1
RFLAG RMB 1
MFLREZ RMB 1
TEMPZ2 RMR 1
XKEYBF RMEB 2
SCNCNT RMB 1
YFLAG RMB 1
BPARDR RME 2
*DZBUF RMB 2
>

IF THE USER MODIFY’S THIS PROGRAM

CGENERARTES HIT OWN PROM> THE ORDER OF SOME
OF THE FOLLOWING YARIRBLEE IS CRITICAL FOR

STORE THE ADDRES OF HIZ IRD

IRD INTERRUPT POINTER

PUNCH BESINNING ADDRESS

PUNCH ENDING ADDRESSE

MMI INTERRUPT POINTER

TEMP =TRCK BUFFER

ZCRATCH

DIZPLAY RBUFFER

4 DIGITE ENTERED FLRG

2 DIGITS ENTERED FLARG

MEMORY CHANGE MODE FLAG
REGISTER DISPLAY MODE FLAG
TRACE MODE FLAG

COUNTER IN REE& DISPLRY. ARUDIO
MEXT LOC IN DISPLRY BUFFER
KEYBORRD ~DISPLAY SCAN COUNTE
CONTRINS THE NBR OF RCTIVE BR
TEMP RDDR OF BP&XREG TEMP
xREG TEMP LOCATION

BREAKPOINT AND OPCODE TRBLE
EARCH BRKPT REQUIRES 3 BYTES:»
BYTES 1,2 RRE THE RDDRESS OF THE BRKPT
BYTE 3 IS THE REPLRCED OF CODE

ARE YALID

PTRE

RMB
END

15

Al-16

>

*

»

L 4

4 CHECK YFLAG TO SEE HOW MANY OF THE BRKPTS
>

*

B

BRERKPOINT & OP CODE THBLE

PRSE 017 JBUG

1o
HOMNMEK
THMI
NONMK 1
EWIR
TZ20ONK
-ENR
TDISP
ADD3X
GETXB
ZETBR
TPIG
TZ20T7
DISHMI
RESTARR
INIT
CLFLG
CLFLG1
CLRDS
CLRDE1
HDR
DLY20
DLY1
BLDX
OouTD=
OuTDEL
guTDER2
KEYCL
KEYCL1

EO14
E019
E023
EOZ2D
ED32
E044
E0S4
E058
EDSE
ED063
EO6R
EQ72
EO76
E024
E 03D
EORC
EDB2
EOB6
EOC4
EOCE
EQD?
EODD
EQED
EDE4
EOFE
E101
E10B
E12F
E13R

KEYCLZ2
OuTDsS3
KEYDC
KEYDC1
KEYDCR2
KEYDC3
KEYDC4
KEYDCE
KEYDC?
KEYDCS
K¥YDCS
JMPTRB
KEYDCS
KEYDCS
KEYDCH
KEYDOF
KEYDCH
TRACE
KEYDCRE
KEYDCC
KEYDCD
KEYDCE
KEYDCH
KEYDCF
KEYDC.J
TR
TGLC
KEYD1F
KEYD2F

E148
E149
E14E
E15B
E169
E16D
E17R
E192
E198
E1RC
E1RF
E1B6
E1C6
E1CE
E1D4
E1D?
E1DR
E1DD
E1E6
E1F?7
E203
E206
E20C
E20E
E2c4
E236
E24D
E25R
E261

KEYD3F
MDIS
MDISO
MDIS1
MDIS2
MINC
REGST
REGSTO
REGST1
REGST2
REGST3
REGST4
REGSTS
REGSTS
REGST?
REGST6
PNCH
PUND1D
PUND2S
PUND30
OUTCH
OuTC1
PUN
PNLIR
LOAD
EILD
RDBLCK
STBLCK
INCHR

Al-17

E266
E269
E271
E27E
E2SH
E2A4
E2Cé
E2D0
E2DY
E2F0
E307
E311
E314
E31C
E322
E327
E22F
E339
E349
E360N
E37RA
E37B
E3837
E32D
E335
E39R
E3RS
E3R6
E3CO

DIGTBL
KEYTBL
DISREG
DISCTR
ZCNREG
SCNCTR
ARCIARS
ACIARD
ov
BEGAR
ENDR
MNIO

=P
TEMP1
DISBUF
DIGING
DIGINS
MFLRG
RFLRAG
NFLAG
TEMP2
“KEYBF
SCMCNT
YFLRAG
EPADR
#“DERUF
EPTARR

E3CR
E3DC
8020
8021
8022
8023
2008
2009
ROOD
RDO2
RO04
RO06
RO08
ROOR
ROOC
RO14
AN1S
RO1K
RO17
RO13
RO19
RO1IR
RO1C
RO1D
RO1E
ARO20
RO22

APPENDIX 2

ASSEMBLY DRAWINGS AND PARTS LIST

MEK6800D2 Keyboard/Display Module Parts List

NUMBER
ITEM | REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION
1 3 Integrated Circuit: Peripheral Driver MC75452P U7, U8, U9
2 6 Integrated Circuit: 7Segment LED Display Litronix DL704 Ul — U6
(Litronix or Monsanto) Monsanto MAN72 or 74
3 1 Integrated Circuit: Dual 4-Channel Data Selector MC14539BCP Ul10
4 1 Integrated Circuit: Dual Monostable Multivibrator MC14538BCP Ul1
5 2 Integrated Circuit: Dual D Flip-Flop MC14013BCP U12, U18
6 1 Integrated Circuit: Quad 2-Input AND Gate MC14081BCP U13
7 1 Integrated Circuit: Quad Analog Switch MC14016BCP Ul4
8 1 Integrated Circuit: Quad Op-Amp MC3301P U16
9 1 Integrated Circuit: Dual Line Receiver MC75140P1 ul17
10 1 Integrated Circuit: Seven Stage Ripple Counter MC14024BCP U19
11 1 Integrated Circuit: Analog Multiplexer/Demultiplexer MC14053BCP U20
12 7 Transistor, PNP MPS2907 Q1 — Q7
13 1 Capacitor: 100uF, 16 volts C1
14 14 Capacitor: 0.1uF C2, Cs, C9, C10, Cl4,
C16-C23, C25
15 2 Capacitor: 0.05uF C6, C13
16 3 Capacitor: 0.001uF C3,C4,C24
17 3 Capacitor: 0.002uF C7, C8, C15
18 1 Capacitor: 2400 pF Dipped Duramica Cl1
19 7 Resistor: 4700 Q, 1/4 W, 5% R1, R4, R7, R10
R13, R16, R19
20 29 Resistor: 10 k2, 1/4 W, 5% R2, RS, RS, R11, R14,
R17, R20, R22-34, R46,
R49, R53, RSS, R56,
RS9, R60, R61, R57
21 7 Resistor: 68 €1, 1/4 W, 5% R3, R6, RY, R12,
R15, R18, R21
22 2 Resistor: 27 k2, 1/4 W, 5% R35, R40
23 8 Resistor: 100 k), 1/4 W, 5% R37, R38, R39, R41,
R43, R47, R54, R58
24 2 Resistor: 100 (2, 1/4 W, 5% R48, R51
25 2 Resistor: 1000 €2, 1/4 W, 5% R52, R62
26 2 Resistor: 180 k), 1/4 W, 5% R36, R42
27 3 Resistor: 22 k), 1/4 W, 5% R44, R4S, R50
28 24 Switch (Stackpole) LO — PROS S1 —S24
29 16 Keytops, Double-Shot, Molded, White (Stackpole) 0,1,2,3,4,5,6,7,8,9,
Used with S1 — S24, A,B,C,D,E,F
Item 32
30 8 Keytops, Double-Shot, Molded, Blue (Stackpole) E,G,L,M,N,PR, V
31 1 Connector Cable
32 1 Printed Wiring Board

A2

8°PLAGES

Ub

000 oo
us
%o o oo

U4

s0e oo
U3

s 90 00
e % RCEE o 54l e

o [F5-eo o FTe
o—(Foo—o e T
(XYY XY YY) (XY XY

5 Uz20 lcm Uil S ' ag
Y YXrxxl : | ooooooodll
o e

[A XXIXXY) (L XIXXX) Q7

US | e 2 U2 | oo iR

XYY YY M I BCX XTI XXX 1
LI [T]
*{rCi o = s

U8 b UI3 .

Uz

000 oo
) Ul

(XY X I X & oooooo >
YYY 000ocee
T L =
XXX 06 eccccoe ii! ;
czs g
e O—ﬁo{%—o
cssesce cic o Tme)
uli6 _ X _PORirg B
XXX XXX L=

P1

o—R3Z—e
U10
XXX XY X))
Ci7 [o_e]

o—{rR33—@

MEK6800D2

MOTOROLA
KEY BOARD /DISPLAYMODULE

REV. B
84DW6233X01

o
Cle
~ |@

[

° o:

Cle o C

O (@ o OO0

e o
o—{Rzel-® o {Rid—o e (R}
Qf»—l@—a o—{Rz7—o o—R2co

4

th

b wit
< o]
o w
© Tl
M~ <

6 PLACES

A2-1

DO

FIGURE A2-a. Keyboard/Display Module Assembly

MEKG6800D2 Microcomputer Module Parts List

NUMBER
ITEM | REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION
1 1 Printed Wiring Board
2 None Integrated Circuit: 3-State Hex Driver MC8T97 U1, U2, U3
(Optional — Reference only)
3 None Integrated Circuit: 3-State Transmitter/Receiver MC8T26 U4, U5
(Optional — Reference only)
4 None Integrated Circuit: 8-Input NAND Gate MC7430 u7
(Optional — Reference only)
5 1 Integrated Circuit: Microprocessing Unit (MPU) MC6800 ué
6 1 Integrated Circuit: MCM6830 ROM (JBUG) SCM44520P U8
7 1 Integrated Circuit: 3-State Hex Driver MC8T96 U9
8 None Integrated Circuit: Electrically Programmable ROM MCM68708 uU10, U12
(Optional — Reference only) (Alternate)
9 None Integrated Circuit: Programmable ROM MCM7641 uU1o0, U12
(Optional — Reference only) (Alternate)
10 None Integrated Circuit: Mask Programmed ROM MCM68316E u10, Ul2
(Optional — Reference only) (Alternate)
11 1 Integrated Circuit: One-of-Eight Decoder MC74155P Ull
12 3 Integrated Circuit: Random Access Memory MCM6810 Ul13, Ul4, U16
(RAM) (128x8) (U18, U19 Optional)
13 1 Integrated Circuit: 614.4 kHz Clock MC6871B U1s
14 1 Integrated Circuit: 12-Bit Binary Counter MC14040BCP u17
15 2 Integrated Circuit: Peripheral Interface Adapter (PIA) MC6820 U20, U21
16 1 Integrated Circuit: Quad 2-Input NAND Gate MC7400P u22
17 1 Integrated Circuit: Asynchronous Communications MC6850 U23
Interface Adapter (ACIA)
18 1 Integrated Circuit: Dual D Flip-Flop MC7479P U24
19 1 Integrated Circuit: Binary Counter MC8316P U25
20 1 Capacitor: 100uF, 16 volt Cl
21 22 Capacitor: 0.1uF C2 —C19, C22 — C25
(Note: Ref. Designations C20 and C21 are not used)
22 None Diode, Zener, 5-volt 1N4733 CR1
(Optional — Reference only)
23 1 Transistor, NPN MPS2222 Q1
24 18 Resistor: 10 kQ, 1/4 W, 5% R1, R6-R22
25 3 Resistor: 3300 Q, 1/4 W, 5% R2, R3, R4
26 None Resistor: 68 O, 1.0 W, 5% RS
(Optional — Reference only)
27 None Capacitor: 160 uF, 16 volt C26, C27
(Optional — Reference only) R20 — R22
28 10 Socket, 24-Pin (Robinson-Nugent or Equiv) ICN—246—S4T
29 3 Socket, 40-Pin (Robinson-Nugent or Equiv) ICN—406—S4T
30 1 Switch, Pushbutton (Control) B8600 Reset
31 1 Cap, Pushbutton Switch (Control)
32 None Connector, 86-Pin (SAE) SAC 43D/1 — 2 (For P1)
(Optional — Reference only)
33 None Connector, Edge, 50-Pin (SAE) CPH7000 — 50 ST (For J1)

(Optional — Reference only)

A2-2

w

3

N

s

or—_—°
o °
° °
c24 s .
° o
° o
ol L2l o
° o
° o
° o
° °
° o
° o
° o
° o
° o
° o
° °
° o
oo o
(-
° °
o
civ §
° o
°
°
°
°
°
[°
° °
° ° °
° °
o ofVl|e
°o o °
° °
H
°

°0° © o
0000000 o 0.0 ° ° ° ° ° °
°°° o® °°° ° ° ° ° ° °
o° °° ° ° ° ° ° °
M (] ° ° ° ° ° °
ocoooooooooooooooo@ e o o o o o
©00000000000000000¢ . : ° M . °
00000000000000000008 ° o o o ° °
(-]] o -] (-] -]
o L] © (-] -] -] o
yao ° ° ° ° ° °
o (] o (-]] (-]
-]] ° ° [° °
° 0000000000600000006060 ° ° ° o ° °
-] L]] ° © o
°° ° 6o °c ° ° o ° °
-] [- X -] o o [°
° *® °
°
° °
0® °P ° ° °
°
o ° o °
%o of |e ° o e ® o
o ol ule o |eo °
° ° ° ° ° °
L °o ° ° °U5° °U4
° ° ° ° ° . ! o[2
°eo ° ° o o ° ° o
° ° 0,0 ° ° o °
co o° 089 o ° o
e % ci8 ° crd
°
o °
0
° o
OF 6 -]
2 T -
Ui ° o (<]
- 13°3 b
to P
OES 9] b
° b
° p
o b
0 °
0060 0 © (RS 0000
e EBEG ET E0 B €7 £966E8% O ggo
o © ° !
4 ° ° o cs o° o YY)
o o ° °
. ° °
o °°
o
vla o P °
o 0 °
o ° o o
o .°us° °
o ° °
L ° ° L Neld °
o ° ° o
o ° °
° o

°

FIGURE A2-b. Microcomputer Module Assembly

A2-3

© 0000000000 O0COO0O0O0CO0O0OC

. ..
@92

e0c00000Db

5 < .
rS

00000000

©0 00 O0C00DO0O0O0©0O0O0CO0OO0O0OO0O0O0O

o o
o0
(-] o o
(-] L] [-] L] o o
-] -] ° o -3 ° -]
° o o -] o o o
o ° o ° o o o
o [° ° o o o
° ° o 4 -] -] o
° ° o o -3 o °
L [o L] o L] (-]
-] ° o -] -] o (-]
-] ° ° -] -] o o
-] ° o -] ° ° (-]
-] o] o o (] o
-] L] o ° Q9 -] o
° o °] o] o
(] o L] (-] o o [}
] L] L] o -1 o (-]
L] L] L] o -] - o
-] ° ° o (-] o L]
o o o ° o ° L]
o ézj © o0
o L}
o © ° uis
o ¢ ° ° o o 0]
¢ ©° (-] olu 10
o ofu |e o7 |® o o
o ol22]e ° °
o o o ° °
o o ° ° °
o o o ° °
° <3
s ° Q& 5
@O o °° ©9 4
o
° °
°
°
° °
° ° o o ° ° °
° ° o o ° ° °
° o o ° ° ° °
° ° ° ° ° °
olUdje o|U2]e oVl [e
° ° ° oCce o °
° ° ° ° ° °
o5 ©) o ° o

e

° °
°]
° °
° °
° °
° °
° -]
o -]
° °
° o
o o
° °
o -]
© o
o °
° °
° °
L] ©
° °
° °
00000

cio

8

COMPONENTS WHICH ARE RATED IN WATTS SHALL BE MOUNTED
1732 INCH MINIMUM OFF OF BOARD SURFACE AND ELEVATED

AN ADDITIONAL 1/32 INCH FOR EACH WATT IN EXCESS OF ONE WATT
UNLESS SUITABLE HEATSINK OR SUPPORT IS SUPPLIED.

ALL COMPONENTS SHALL BE MOUNTED 1/32 INCH MINIMUM
OFF OF PRINTED WIRING BOARD SURFACE.

UNINSULATED COMPONENT LEADS WHICH PASS OVER OR ARE

IN CLOSE PROXIMITY TO EXPOSED CIRCUITRY OR ADJACENT
COMPONENT LEADS WHERE THERE #5 POSSIBILITY OF ELECTRICAL
SHORTS, SHALL HAVE SLEEVING INSTALLED PRIOR TO
COMPONENT INSTALLATION.

JUMPER WIRE TO BE NO.24 AWG, TINNED, SOLID, INSULATED
(COLOR WHITE) ELECTRICAL HOOKUP WIRE.

ALL COMPONENTS TO BE SECURED TO CIRCUIT PATTERN
USING TYPE MS -SN60 RESIN CORE SOLDER.

NUMBERS ON CIRCUIT PATTERN ARE POSITION LOCATORS
ONLY AND DO NOT INDICATE PART IDENTIFICATION NUMBER

OR REFERENCE DESIGNATION.

@ INDICATES DOUBLE TURRET TERMINAL LUG LOCATION.
—{B— BAND INDICATES CATHODE END.

FLAG ON CIRCUIT PATTERN INDICATES CATHODE END

LOCATOR FOR AXIAL LEAD SEMICONDUCTOR DEVICES.

FLAG ON CIRCIHT PATTERN INDICATES PIN | LOCATION ONLY
AND DOES NOT INDICATE INDEX MARK OR TAB ON DEVICE.

NOTES : UNLESS OTHERWISE NOTED:

APPENDIX 3
SCHEMATIC DIAGRAMS

P1 MATES WITH J2 ON Q1-07: MPS 2907 +5v
MICROCOMPUTER MODULE
P1 R
§
t
PAG P ——t 25
)
|
!
|
. t
: RS - —
: ; 10K i
R4 a2 1 ”
ms | N N 23 VMA | ; +5v
) 4700 o R6 : |
H T
| |] Ti ! i J
\ }]
o | || [| L
H
! A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G W53 R23 bR2e
PA4 ~m + 21 o sk R25
P U1 ADDR. (MS) [VF ADDR. us ADDR. us ADDR. uUs DATA (MS) us DATA tox K 3\0"
o CcC cC M E R G &
. ¢
L HJ LT L‘_l L L1 [o ZO/O/ /}o/o’ %
: 1 P N
PA3 L 19 | i O/J v
pacd X pcIbet
el Vad al
; 7 8 9 A
Yo Y] >/o’1 ¥
PA2 3 17 VWA 4 5 6 B
4700 RIS
* SR Yo Yol Yoy
| et
|
; Y| Y Y Yo
o | i . /O p 0 O
o F E D
)
i
PAO H ' 13
R46
10K
|
i R38 R39
: 100K 100K 12
i AA
PBS | 12 24 !
H
ls R4t R40 1L
PBa | 11 22 5V P sip S_J, 100k 27K
' 1 "~ 1c3301
PB3 | 10 i 20 ! {Jc u19 R42 45V
i 2 MC14024
i
PB2 | o 18
P81 | 8 + 16 —I————— 7 lout
13
: I 1 10K
PBO 7 : 14 @ u1? Ref{__.8
' Mcrsasz MC75140
+5V
R32 < R33 116
10K %mx o —‘-guia@ 3
PB6 | 13 26 Mla U100 XOf s e i
X1} — | | = ns3
PB7 | 14 . 28 2l ot) $’°"
i +5V t]er MC14539 ke NOTES : I =
R34 =
! ! 10K 2 T 1. UNLESS OTHERWISE SPECIFIED: +5V - RSS R5¢
i 1 = I7 8 RESTSTANCE VALUES ARE IN OHMS, RS0 +5V 10K 10K
-~ CAPACITANCE VALUES ARE IN MICROFARADS, 14
PAT R i = RESISTORS ARE 1/4 WATT, 9090000 22K F
ce1 | 15 i 3 S oo \k
RTS | 18 32 2. ON PW LAYOUT, A 0.1 UF DECOUPLING cs60 o <X C\% s\p\oi‘&. be, . \ o
CAPACITOR FOR EACH 3 IC's. [3 o
RXD | w a7 TYP. FOR 4 e
X0 v 33 Q1 THRU Q7 ARE MPS2907, MC3301 e {~3 f!-&"C& O o= '“‘t“3° reac‘ Ok
RXC | 19 38 MC14013 . -
TXC 7 34 4. L] THRU U6 ARE LITRONIX DL704 OR EQUIV. MC14016 dcxp
At 1,2 +5v MC14081 = C!QC\'\B l : AQ Qeef&“ b“ .
E— Bz; 3:‘ 2‘:‘1;09,, +5v +5V +5V
+5V c.3 5.6 —| ‘_]'j
o 7.8 s L _ls_ 2 = ‘9000 90000000 ‘90000000
.5 9,10 = s 2
N
F.6 11,12 w 5 { 1 D{s__| M) Al4 :
X,20 P 30,40 100 R 3 UIsA a Una 0000, '.A..'. 09: @000 OPBO: [, o reransivies N
v.21 41,42 SEE NOTE | 45y peo ° c MC14538 TYP. FOR HC14538 MC14053 STo D Integrated Circuite Divieion
222 43,44 2 cy M MCT5140 GND al ND| anv seEeimcations. onamines om mErminta. om 021 Fun. | NOTES 2200 WEST BROADWAY, MESA, ARIZONA 85202
GNp| | Z t oK 245 740 BLS B e B Z = sieco 1o oon on eLcEn i Atuan evoNocrd LS e
x.23 r 4546 A c ! o MATERIAL KZYROARD,/DISPLAY MODULE SCHEMAT!Z
B.24 i 47,48 ORIGINATOR [OATE . Mis - .
c.25 49.50 14 3 sy BURiNGAVE \1/08/76 MEKGB00DZ KIT
o 1 prtl il [SATE JPron sroue e
() = Cuatt GNDEA ANO ERTLUNIVE AIGHTE FOR TuE USE 0 RE- DATE -
- #ADOUCTION THEREGE AME RESLAVED BY MOTOROLA." guECKED l CODE 04713 l SCALE WEIGHT: lsnEET oF

FIGURE A3-a. Keyboard/Display Module Schematic
A3-1

€O ENGT ET CHANGE " [m‘l
e 4 RELEASED
REF REQ| 12
REFGNT| 13
+5v
8 33]
VMA F—owvwma +5¥
3-----e2 A% A 32 o N v sy *5V sy |esv l—"
AG |40 3 a A A MPU B\ -5y s a llio 2| o .29 28 a0 2 . e
Al t v F Y3 2 a8 9| MG8OO ——;I, gi N A 2412, Y 5 8 E; Do a6 23 L 7o) 2 Do fad EZ_D_O_\ Ab 2 A % ¥ 3 RAW % ﬁ RAM 3B
A2 1T > Tio B) T o N ™ o D A 2 3 o) k= EREIN QNS o XY Azl S I3 @80 | >—2L)
A3 |33 X iz XY \IYY I 28 05N A2 3 Dbl & " e ; N Nz Y2 o D | (4 D2 Y kR 2 ﬁ:ﬁ; a oY Nea] o ey el [b2
A4 | B g | A A 7 T e » 6 I N I N N [ot e - T3)
bt 13 ¢FE 114 A 27 Dé a2 22 4 D2 = 3 N 5 D3 A3 20 5 03 A3 20 5
T ! : 3___ 7 —\ RaM 503 kA3 2ojoos[5 03 Y KA o |, N MCLBD N2> 20 measio
* w8 & b —m__'mﬂ 23 2l (Rwo) 5 b hS____ o 3. D3] KA 29 &\5 & \‘—gce%?o—‘ﬂ vie 54N fa w e 04 Y Nee 19l g [e Da)
F B AS 4 31 o2 t@ E00 P o0 - e e N LA 19l(r000 g o L= e D] kae o A NMY_ 9 uis BN \AS_'; v ey
Als \S 3 @ MCGB!(Xﬁ N [s aimeso T =N las 8l ue [T 5 Y ke 1B 7 DS KAS B N
= A 6 Re wae A5 13 7 D5 AL 3| PROM |15 LER I Nacll-d = o P 17 8 Do Y hoe T 8 De
S— e DR s V. [y €000) e e\ T 5 beY hae 17 EA O 8 06 Y hae N6 1] LI N
_ 37 N2 o N 17 ED) Tok % 18 s Do ko 2" e Do 1 NAe 7] N o o oN kar les [3 o7 AT 10 2 D1
Ao | S Ve & 29 0 0 FFSET N N SEE D7 AT i |2 o1y ka1]l [2 o1 Mo 2 hat_ 1) 2
< ! a1/ a1 5 D1 ka1 i 7 ¢ G] [\{ N kag 3 lo RIW
N L 8 Y - e b 3w o ® = VT 3o PR Y L ne nzg2 o RNY N® (25 [lo RWY KW 21 o RIWY KM ol reo | [fe
X 2 e AN 22 N S ms) I) %o 14 Bod) | (o n =2 o 2E) |\ M ol g
:3 B 3 SEE e A ;__:"32 23 5 :M\;v SacEI e E‘\ — & o —e i m&lsfa‘ co5/S RRM cz3) 5 TE 5
3 Ne All 3% aw TS e = zZ
Al | 3 o NOTE 7 KA 24 N s & d =t e (S1 N S ’j_ﬁ \ ﬁ}_ﬁ T
's\v-r_eL < J—Ts_ AlS 2§ 3 BA ™ To ???? Tz T _TL It 4 L L L "
N - = =
s a2 s pe L v s L
A'_:- %‘ 5 U3 4 A3 = o N5V RZ0.10K gz
A3 N 7 e A4, w5V D
—! L
:g g\s ,?J ;}2 25w P TS T T T e Mamiss ~8Y 3 ¢
aw | @ 135 e R +3v RIG romI L o Ly 3 ! e [Y 20
rz2 |4 ol SEE 1] D AASEEREEERN . A _ . = i
+8V =1 noTEd s 10K ‘ MCBT26 uil) o Y g
| Y ' ! =
| : 4 < ™ " 3) 3 R 7] ¢so radl3
= e L2 o0 +5¥Y) - 8 1|z 7y = uzo 2: Y i
5B |3 vs T I S 1 g g M X PAYS
i b — COL 1t S Al o e KA Pl M
Rl o) 3 L U7 goee A L 3 i i Bioe g |2 PR 4 ﬁg el iy
(¥ 0 m o2 = B RW ! < : 1 [0 PROWY o 23mH pp[® P
53 |SH— ST 5 ' ¢ N/ } " T 2lem Ii STRK 06 33 PAT 2 R
2 | I | 5 FOW_A ‘ ! JA STl yo b 222N ™ 32 N <
@, 2l 8! (e PROMG/| VMA LN G2 :] /0 J (T3, [E
SV —— I { jll STACR A -) D3 30 (=] 9
& 05 y Z3IB : i D 520049 PBO [
: : L__! R s L __ = po. 1 o
= seE e o sét LI D °
= NOTE & = = [———‘sv g? 227‘ B3 10
P PB4 i
gy TR - e ’ > ™ e, TSl 2
04 R 2 DS ™ms 37 AW PBGS 3
il o '8 L ai 7 5]~ 10 bi e O IAGe PRl A LY
e
o5 |30 <. 7] o 5y ST 30 L0 B 1o s
S R s i A b | s e " b2 o RESEY cB2 % |
53 = . -
B alE—— :M o1 i
.5y ._ﬂ 2 R22, 10k |AT N a3 5 13 D3 e
8 it VWA O, m
F S | =3, 0k |as] 4 @ —— At q) D4 3 J
i bomssd 1
T SEENOTES EYE) A Ri2 o fag] 4 @—'@/ - 3| PROM g DS, 5 L J2
ACD 2¢ Fv3 VAA (6000 é M | MATES WITH P}
S=002 a7 | 21 - Ril, 10k as " SEE ig De, RESET z N %?ssﬂeoms
W\ NOTE 3 s
M| 22 BA A RI10, 10x A4 A - o7 :o R un
-1 ~ VWA AT i) o— s
FE | s :EE =3 10k fa3| 4 anosv-svﬁ ‘ ‘-? -
— ! F—AA _ B D3 3 os 7
RN 13 re ox 2| A8 2 = 22 L. g ! ! L Ba 29 T 5
HZ 1 Y MEN CLK b\ AA - @ 22, 19 ! DS 28 o2 12 5
MEM LR | L AC R7,10k |At +5Y e 27 it i3 s
AU y L AAA- 2] Jio DT 26 roap T
TALT | 4 T=a Re 10w [ag] | e b 3| pglis e
IR0 W A ap i, VB3 — =3[R il -
NMT | € TsC = o) T J'I’WSB PB| 8 h
TSC N e 23 T e ROA B ho
1/o 2 By SR 3 BEELL - Sres 1o
-5vDC |ar Ri Re [R3 R4 \ A T+ Al
wsvoc |82 ik $3300a $33004§3300a RIW 13 v = J T wcesie . 3
' N DEE Wi acia T ™MCaR2i <3
»svDC [3 *5V o4
= icg ice---lcas seE N D¢ 22| nc@ooaasg » b
| Toowr Tk TuuF WoOTE 2 [2! e, |2 Iy
GND [Wal 1 Dz 0 2 =
GND X42 CRI OPT ONAL F(z(, [\ gz I? RxD A §z
GND VsJ:i K \var33 I0OUF , 16Y \ DS 07 1‘: 4 v 'Bu
-svbc |2 5 -5V Dée 'E 3 | is
A OFT:ONAL L car 7 RxC] |u7
" {OQUF—‘!{\OIV __3800 HZ = l L)
-OC M t o
-avde Tee 12V] :
212V GND u:e - o v | ™ SCHEMATIC — BASIC
2250 [K9 i . e e MICROCOMPUTER
:
= ::-u-n-u--_:: MODULE
| —_—— — — & o
e oo s mecem s | EVALJATION. KIT TT
‘ PATTIBS. MouNIS. SREES SPSMNSTIS 40 SOV
4 ,MCBT97 OPTIONAL I i s e = e e o
3. OPTIONAL PROMS - e tactoeme
Mces7o8 MCMT6A MCME8347 5,MCE8T26 OPTIONAL [MOTOROLA INC.
2.CAPACITOR FOR EVERY 3 PACKS El TO £2 E3 TO E9 EO TOE4 6., MCM30P OPTIONAL YR FOR | pnpssipdigemplgoed
L UNLESS OTWERWISL SPECIFIES: E3 70 E8 E4 710 E'/7 Els ";g 529 MC 74T | P
RESISTANCE VALUES ARE v ONmS. cAPACITANCE 545 I_g Eg B W€ AV MCTe30 i
VALUES ARL W MICROFARADS. RESISTORS ARE swarrior E _ _ __ M7ec0 |
worEs:
S
AR 2000 u-¢

A3-3

FIGURE A3-b. Microcomputer Module

APPENDIX 4
POWER SUPPLY INFORMATION

RECTIFIER ASSEMBLY FOR REGULATED POWER SUPPLY

1.0 2/5W

o—I 1o A A O
Ohmite 2822
or Equiv,
| | nE SRR * 3000uF
117 vac 12.6Vv ~ 25WVdce
rms jy S Sprague TVA1214
o— ‘

Stancor P-8358 MDA 970-1
Triad F-26X =
or Equiv.

Note: Ground filter capacitor return lead near negative terminal of rectifier to minimize ground loops.

—0

+ 10 Vdc
2.5A-3.0A

or Equiv.

REGULATOR

MJ2955

VIN 0.1282 o Equiv
S5W

Input

+10V
J Isc(a1)

2N6049
or Equiv
q VO

x]

IsctoT

Output + 5V
Isciict) 2.5 A

R: used to divert IC regulator bias current and determines at what output current level Q1 begins

v
conducting. 0 < R < ZBEON(Q1) ; gge » 0.8V |geqgy = Igc(ar)*Isclict)
IBiAs(1C1) Isc(Qi)

Note: The Regulator Assemobly is capable of supplying 5 A with 2.5°C/W and 1°C/W heatsink on IC? and Q1
respectively (T 5 = 70 C).

Refer to the Motorola VOLTAGE REGULATOR HANDBOOK for additional information.

A4-1

